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Homomorphisms from AH-algebras

Huaxin Lin

Abstract

Let C be a general unital AH-algebra and let A be a unital simple C∗-algebra with tracial
rank at most one. Suppose that ϕ, ψ : C → A are two unital monomorphisms. We show
that ϕ and ψ are approximately unitarily equivalent if and only if

[ϕ] = [ψ] in KL(C,A),

ϕ♯ = ψ♯ and

ϕ† = ψ†, (e 0.1)

where ϕ♯ and ψ♯ are continuous affine maps from tracial state space T (A) of A to faithful
tracial state space Tf(C) of C induced by ϕ and ψ, respectively, and ϕ‡ and ψ‡ are induced
homomorphisms from K1(C) into Aff(T (A))/ρA(K0(A)), where Aff(T (A)) is the space of all
real affine continuous functions on T (A) and ρA(K0(A)) is the closure of the image of K0(A)
in the affine space Aff(T (A)). In particular, the above holds for C = C(X), the algebra
of continuous functions on a compact metric space. An approximate version of this is also
obtained. We also show that, given a triple of compatible elements κ ∈ KLe(C,A)

++, an
affine map γ : T (C) → Tf(C) and a homomorphism α : K1(C) → Aff(T (A))/ρA(K0(A)),
there exists a unital monomorphism ϕ : C → A such that [h] = κ, h♯ = γ and ϕ† = α.

1 Introduction

Let X be a compact metric space and let A be a unital simple C∗-algebra. Let ϕ, ψ : C(X) → A
be two homomorphisms. We study the problem when these two maps from C(X), the commu-
tative C∗-algebra of continuous functions on X, into A are approximately unitarily equivalent,
i.e., when there exists a sequence of unitaries {un} ⊂ A such that

lim
n→∞

u∗nψn(f)un = ϕ(f) for all f ∈ C(X).

In the case that X is a compact subset of the plane and A is the n × n matrix algebra, two
such maps are unitarily equivalent if and only if the corresponding normal matrices have the
same set of eigenvalues (counting multiplicity). Brown-Douglass-Fillmore’s study of essentially
normal operators led to the following theorem: Two unital monomorphisms from C(X) (when
X is a compact subset of the plane) into the Calkin algebra are unitarily equivalent if and only
if they induce the same homomorphism from K1(C(X)) into Z. It should be noted that both
the n×n matrix algebra and the Calkin algebra are unital simple C∗-algebras of real rank zero.

Unital separable commutative C∗-algebras are of the form C(X) for some compact metric
space by the Gelfand transformation. Therefore the study of C∗-algebras may be viewed as the
study of non-commutative topology. As in the topology, one studies continuous maps between
spaces, in C∗-algebra theory, one studies the homomorphisms from one C∗-algebra to another.
In this point view, the study of homomorphisms from one C∗-algebra to another is one of the
fundamental problems in the C∗-algebra theory. At the present paper, we assume that the
target algebra is a unital simple C∗-algebra, which conforms to the previous two mentioned
cases. Simple C∗-algebras may also be viewed as the opposite end of commutative C∗-algebras.
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For the source algebra, we begin with the case that it is the commutative C∗-algebra following
the two above mentioned cases. However, we will study the case that source algebras are general
unital AH-algebras (They are not necessarily simple, nor of slow dimension growth).

Let ϕ, ψ : C(X) → A be two unital homomorphisms and let I = kerϕ. Then I = kerψ,
if ϕ and ψ are approximately unitarily equivalent. Therefore, one may study the induced
homomorphisms from C(X)/I instead. Note that C(X)/I is isomorphic to C(Y ) for some
compact subset of X. To simplify the matter, we will only study monomorphisms. The problem
has been studied (for some earlier results, for example, see [8] and [9] ). Dadarlat ([2]) showed
that, if C = C(X) and A is a unital purely infinite simple C∗-algebra (such as Calkin algebra),
then two unital monomorphisms from C into A are approximately unitarily equivalent if and
only if they induce the same element in KL(C,A). When the target C∗-algebras are finite, other
invariants such as traces have to be considered. When A is a unital simple C∗-algebra with stable
rank one, real rank zero, weakly unperforated K0(A) and a unique tracial state, it is shown in
[6] that ϕ and ψ are approximately unitarily equivalent if and only if [ϕ] = [ψ] in KL(C(X), A)
and τ ◦ ϕ = τ ◦ ψ. When the real rank of A is not zero one needs additional data to determine
when ϕ and ψ are approximately unitarily equivalent. In fact, it is shown ([18]) that when C
is a some special unital AH-algebra and A is a unital simple C∗-algebra with tracial rank at
most one, two unital monomorphisms ϕ,ψ : C → A are approximately unitarily equivalent if
and only [ϕ] = [ψ], ϕ♯ = ψ♯ and ϕ

‡ = ψ‡, where ϕ♯ and ϕ
‡ will be defined below (2.1) and (2.3).

The technical condition imposed on C(X) is basically said that, K-theoretically speaking, C(X)
has a lower rank. In this paper this restriction on AH-algebras has been removed. A complete
criterion is given for two unital monomorphisms from a general AH-algebra into a unital simple
C∗-algebra with tracial rank at most one being approximately unitarily equivalent.

One may view the result of this paper is a generalization of that in [18]. However, this
generalization have a number important applications. First, the improvement is based on the
proof of Theorem 3.6 below. The proof of the main result in [18] among many things uses
Theorem 3.2 of [18] which in turn, among other things, used the technical decomposition theorem
of Guihua Gong ([5]). Gong’s theorem has a very technical and long proof. The proof of this
paper does not require to use Gong’s decomposition theorem. Gong’s decomposition theorem
played the key role in the classification of unital simple AH-algebras with no dimension growth
([4]). While the classification theorem for unital simple separable amenable C∗-algebras with
tracial rank at most one satisfying the UCT in [15] do not require Gong’s theorem, however, it
is Gong’s decomposition theorem which shows that every unital simple AH-algebras with very
slow dimension growth have tracial rank at most one. As in [18], one sees that the main result of
this paper can be used to provide a proof of classification theorem for unital simple AH-algebras
with slow dimension growth. Therefore, one can now provide a proof of classification theorem
of unital simple AH-algebras with slow dimension growth without using the celebrated Gong’s
decomposition theorem ([21]).

There are much more than just shorten the proof. One of the long standing problems in the
classification theory is to classify locally AH-algebra with no dimension growth. The problem
could be solved if one could establish a version of Gong’s decomposition theorem which allows
maps that are not exactly homomorphisms. Over more than a decade, since the proof Gong’s
decomposition theorem first appeared, the technical difficulty to generalize it to include almost
multiplicative maps had remained elusive. This author’s many attempts failed during these
years. It is the desire to prove that unital simple locally AH-algebras with no dimension growth
can be classified by their Elliott invariant drew author’s attention again to Gong’s decomposition
theorem. One application of the results in this paper will be the proof that unital simple locally
AH-algebras with slow dimension growth are classifiable by the Elliott invariant ([21]).

Having stated the importance of the results in this paper in the connection of the Elliott pro-
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gram of classification of amenable C∗-algebras and their independence of Gong’s decomposition
theorem, making no mistake, however, we did not provide another proof of Gong’s decompo-
sition theorem, nor we provide a version of Gong’s decomposition theorem working for almost
multiplicative maps. Instead, we establish a so-called uniqueness theorem for almost multiplica-
tive maps from unital AH-algebras to unital simple C∗-algebra with tracial rank at most one
(Theorem 5.3). Even without referring to Gong’s decomposition theorem and classification of
simple amenable C∗-algebras, we believe that the main results presented here have their own
independent interest as discussed at the beginning of this introduction.

The paper is organized as follows: Section 2 serves largely as preliminaries for the whole
paper. In Section 3, we prove Theorem 3.6 which is the main technical advance of this paper.
In Section 4, we collect a number of miscellaneous lemmas which will be used in the proof of
the main results. In Section 5, we prove the main results. To complete our results and make
application possible. In Section 6, we provide the description of range of approximate unitary
equivalence classes of unital monomorphisms from a unital AH-algebra to a unital simple C∗-
algebra of tracial rank at most one. Applications to the study of tracial rank and classification
of unital simple locally AH-algebras will appear elsewhere ([21]).

Acknowledgment Most of this work was done when the author was in East China Normal
University in the summer 2010. This work is partially supported by University of Oregon, East
China Normal University and a NSF grant. The author would like to thank Claude Schochet
who pointed to us there was an awkward computation in an earlier version of this paper which
was now avoided.

2 Preliminaries

2.1. Let A be a unital C∗-algebra. Denote by T (A) the convex set of tracial states of C. Denote
by Tf(A) the convex set of all faithful tracial states. Let Aff(T (A)) be the space of all real affine
continuous functions on T (A). Denote by Mn(A) the matrixes over A. By regarding Mn(A) as a
subset of Mn+1(A), defineM∞(A) = ∪∞

n=1Mn(A). If τ ∈ T (A), then τ⊗Tr, where tr is standard
trace on Mn, is a trace on Mn(A). Throughout this paper, we will use τ for τ ⊗ Tr without
warning.

If B is another C∗-algebra and ϕ : A → B be a contractive completely positive linear
map, then ϕ⊗ idMn gives a contractive completely positive linear map from Mn(A) to Mn(B).
Throughout this paper, we will use ϕ for ϕ⊗ idMn for convenience.

Let C and A be two unital C∗-algebras with T (C) 6= ∅ and T (A) 6= ∅. Suppose that h :
C → A is a unital homomorphism. Define an affine continuous map h♯ : T (A) → T (C) by
h♯(τ)(c) = τ ◦h(c) for all τ ∈ T (A) and c ∈ C. If A is simple and h is a monomorphism, then h♯
maps T (A) into Tf(C).

Definition 2.2. Let C be a unital C∗-algebra with T (C) 6= ∅. For each p ∈ Mn(C) define
p̌(τ) = τ ⊗ Tr(p) for all τ ∈ T (A), where Tr is the standard trace on Mn. This gives positive
homomorphism ρC : K0(C) → Aff(T (C)).

2.3. Let C be a unital C∗-algebra. Denote by U(C) the unitary group of C and denote by U0(C)
the subgroup of U(C) consisting of unitaries which connected to 1C by a continuous path of
unitaries. Denote by CU(C) be the closure of the normal subgroup generated by commutators
of U(C). Let u ∈ U(C). Then ū is the image of u in U(C)/CU(C). Denote by CU0(C) the
intersection CU(C) ∩ U0(C).

Now suppose that T (C) 6= ∅. Let n ≥ 1 be an integer. Let u ∈ U0(Mn(C)). Let γ ∈
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C([0, 1], U0(Mn(C))) which is piecewise smooth such that γ(1) = u and γ(0). Define

∆(γ)(τ) =

∫ 1

0
τ(
dγ(t)

dt
γ(t))dt, (e 2.2)

where τ is identified with τ ⊗ Tr (note that, for n > 1, τ in the above formula is not the
normalized trace). As in K. Thomsen (see [24]), the de la Harp-Scandalis determinant provides
a continuous homomorphism

∆̄ : ∪∞
k=1(U0(Mn(C))/U0(Mn(C)) ∩ CU0(Mk(C)) → Aff(T (C))/ρC (K0(C)). (e 2.3)

We will use CU(M∞(C)) for ∪∞
k=1CU0(Mk(C)).

Define a metric as follows. If u, v ∈ U(Mn(C)) such that uv∗ ∈ U0(Mn(C)), define

dist(ū, v̄) = ‖∆̄(uv∗)‖. (e 2.4)

Note that if u, v ∈ U0(Mn(C)), then

dist(ū, v̄) = ‖∆̄(u)− ∆̄(v)‖

(where the norm is the quotient norm in Aff(T (C))/ρC(K0(C))).
Note that if u ∈ CU(C), then [u] = 0 in K1(C). Using de la Harp-Scandalis determinant, by

K. Thomsen (see [24]), one has the following short splitting exact sequence:

0 → Aff(T (C))/ρC (K0(C)) → U(M∞(C))/CU(M∞(C)) → K1(C) → 0. (e 2.5)

We will fix one splitting map JC : K1(C) → U(M∞(C))/CU(M∞(C)). For each ū ∈ J(K1(C)),
select and fix one element uc ∈ ∪∞

n=1Mn(C) such that uc = ū. Denote this set by Uc(K1(C)).
If A is a unital C∗-algebra and ϕ : C → A is a unital homomorphism, then ϕ induces a

continuous map

ϕ‡ : U(M∞(C))/CU(M∞(C)) → U(M∞(A))/CU(M∞(A)).

Denote by ϕ† : K1(C) → Aff(T (A))/ρA(K0(A)) the map (id−JA)◦ϕ‡ ◦Jc, where JA : K1(A) →
U(M∞(A))/CU(M∞(A) is a fixed splitting map.

If K1(C) = U(C)/U0(C), then, by [24],

U0(C)/CU(C) = U0(Mn(C))/CU(Mn(C))

for all n ≥ 1.

2.4. Let A be a unital C∗-algebra and let u ∈ U0(A). Let γ ∈ C([0, 1], U(A)) such that γ(0) = 1
and γ(1). Denote by Length({γ}) the length of the path γ. Put

cel(u) = inf{Lengthγ(u) : γ ∈ C([0, 1], U(A)), γ(0) = 1 and γ(1) = u}.

Definition 2.5. Let C be a C∗-algebra and let P ⊂ K(C). There exists δ > 0 and a finite
subset G ⊂ C such that, for any δ-G-multiplicative contractive completely positive linear map
L : C → A (for any C∗-algebra A), [L]|P is well defined (see 0.6 of [10] and 2.3 of [17] ). Such
a triple (δ,G,P) is called local K-triple (see [3]). If Ki(C) is finitely generated (i = 0, 1) and P
is large enough, then [L]|P defines an element in KK(C,A) (see 2.4 of [17]). In such cases, we
will write [L] instead of [L]|P , and we will call (δ,G,P) a KK-triple and (δ,G) a KK-pair. Note
that, if u is a unitary then, we write 〈L(u)〉 = L(u)(L(u)∗L(u))−1/2 when ‖L(u∗)L(u)− 1‖ < 1
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and ‖L(u)L(u∗)− 1‖ < 1. In what follows we will always assume that ‖L(u∗)L(u)− 1‖ < 1 and
‖L(u)L(u∗)− 1‖ < 1, when we write 〈L(u)〉.

Suppose that C is a separable C∗-algebra and C is the closure of ∪∞
n=1Cn, where each

Cn = limm→∞(Cn,m, ϕ
(n)
m ) and Ki(Cn,m) is finitely generated (i = 0, 1). Denote by ın : Cn → C

the embedding and ϕ
(n)
m,∞ : Cn,m → Cn the homomorphism induced by the inductive system

(Cn,m, ϕm). We say that (δ,G,P) is a KL-triple, [ın ◦ ϕ(n)
m,∞](P ′) ⊃ P for some n, m and some

finite subset P ′ ⊂ K(Cn,m) and if any δ-G-multiplicative contractive completely positive linear
map L : C → A (for any A), gives a δ-G′-multiplicative contractive completely positive linear

map L ◦ ın ◦ ϕ(n)
m,∞ so that (δ,G′,P ′) is a KK-triple.

2.6. If A is a unital C∗-algebra with tracial rank at most one, then we will write TR(A) ≤ 1
(see [12]).

Definition 2.7. Let X be a compact metric space, let x ∈ X and let r > 0. Denote by O(x, r)
the open ball with center at x and radius r. If x is not specified O(r) is an open ball of radius r.

The following could be proved directly but also follows from 4.6 of [14].

Theorem 2.8. Let X be a compact metric space, let ǫ > 0 and let F ⊂ C(X) be a finite subset.
There exists η > 0 satisfying the following: for any σ > 0, there exists γ > 0, δ > 0, a finite
subset G ⊂ C(X) and a finite subset H ⊂ C(X)s.a and a finite subset P ⊂ K(C(X)) satisfying
the following:

For any unital δ-G-multiplicative contractive completely positive linear maps ϕ,ψ : C(X) →
Mn (for some integer n ≥ 1) for which

[ϕ]|P = [ψ]|P , µτ◦ϕ(Or) ≥ σ (e 2.6)

for all open balls Or of radius r ≥ η and

|τ ◦ ϕ(a)− τ ◦ ψ(a)| < γ for all a ∈ H, (e 2.7)

there is a unitary u ∈Mn such that

‖ϕ(f)−Adu ◦ ψ(f)‖ < ǫ for all f ∈ F . (e 2.8)

The following is an variation of Lemma 4.3 of [18].

Corollary 2.9. Let X be a compact metric space, ǫ > 0 and F ⊂ C(X) be a finite subset. There
exists η1 > 0 satisfying the following: for any σ1 > 0 and any 0 < λ < 1, there exists η2 > 0
satisfying the following: for any σ2 > 0, there exists δ > 0, a finite subset G ⊂ C(X) and a finite
subset P ⊂ K(C(X)) satisfying the following:

For any unital δ-G-multiplicative contractive completely positive linear map ϕ : C(X) →Mn

(for some integer n ≥ 1) such that

[ϕ]|P = [H]|P (e 2.9)

for some unital homomorphism H : C(X) →Mn and such that

µτ◦ϕ(Or) ≥ σ1 and µτ◦ϕ(Or) ≥ σ2 (e 2.10)

for all open balls Or of radius r ≥ η1 and r ≥ η2, respectively, there is a unital homomorphism
h : C(X) →Mn such that

‖ϕ(f) − h(f)‖ < ǫ for all f ∈ F . (e 2.11)
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Moreover,

µtr◦h(Or) ≥ λσ1 (e 2.12)

for all r ≥ 2η1.

2.10. Let C be a unital C∗-algebra and let P ⊂ K(C) be a finite subset. There is a finite subset
FC,P,b ⊂ C and a positive number δC,P,b > 0 such that Bott(u, h)|P (see the definition 2.10 of
[17]) is well defined for any unital C∗-algebra A, any unital homomorphism h : C → A and any
unitary u ∈ A for which

‖[h(f), u]‖ < δC,P,b. (e 2.13)

Moreover, by choosing even smaller δC,P,b, if h1 : C → A is another unital homomorphism and

‖h(f)− h1(f)‖ < δC,P,b,

then Bott(u, h1)|P is also well defined and

Bott(u, h)|P = Bott(u, h1)|P .

As in tradition,

bott1(u, h)|P = Bott(u, h)|P∩K1(C) and bott0(u, h)|P = Bott(uh)|P∩K0(C).

If Ki(C) (i = 0, 1) is finitely generated, then, by choosing P large enough, we may assume that,
when (e 2.13) holds, Bott(h, u) is well defined. Furthermore, we will write δC,b instead of δC,P,b
and FC,b instead of FC,P,b.

If C = C(T), let z ∈ U(C(T)) be the standard unitary generator, one writes that

bott1(u, h) = bott(u, h(z)).

Suppose that there is a continuous path of unitaries u(t) : [0, 1] → U0(A) such that

u(0) = u, u(1) = 1A and ‖[h(f), u(t)]‖ < δC,P,b for all t ∈ [0, 1], (e 2.14)

then

Bott(u, h)|P = 0. (e 2.15)

Now suppose that C is a unital separable amenable C∗-algebra which is the closure of

∪∞
n=1Cn, where Cn = limn→∞(Cn,m, ϕ

(n)
m ) and Ki(Cn,m) is finitely generated (i = 0, 1). Let z

be the standard unitary generator of C(T). We may view P as a subset of K(C ⊗ C(T)). Let
G0 be a finite subset of C. Define G1 = {g ⊗ f : g ∈ G0 and f ∈ S}, where S = {1, z, z∗}. Let
P1 = P ∪ β(P) (see 2.10 of [17] for the definition of β). Let δ > 0. Suppose that (δ,G1,P1) is a
KL-triple for C ⊗ C(T) (by selecting large G0 to begin with).

By choosing even smaller δC,P,b, we may assume that, if there is a unitary u ∈ A such that
(e 2.13) holds, and if there is a unital δ-G1-multiplicative contractive completely positive linear
map L : C ⊗ C(T) → A such that

‖L(f ⊗ 1)− h(f)‖ < δC,P,b for all f ∈ FC,P,b (e 2.16)

and ‖u− L(1⊗ z)‖ < δC,P,b, (e 2.17)

then
Bott(u, h)|P = [L]|β(P).
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The following is a restatement of Theorem 7.4 of [17].

Theorem 2.11. Let X be a compact metric space. For any ǫ > 0 and any finite subset F ⊂
C(X), there exists η > 0 satisfying the following: For any σ > 0, there exists δ > 0, a finite
subset G ⊂ C(X) and a finite subset P ⊂ K(C(X)) satisfying the following: Suppose that
ϕ : C(X) →Mn is a unital homomorphism such that

µtr◦ϕ(Or) ≥ σ

for all open ball Or with radius r ≥ η. If u ∈Mn is a unitary such that

‖[u, ϕ(g)]‖ < δ for all g ∈ G and Bott(h, u)|P = 0,

then there exists a continuous rectifiable path of unitaries {ut : t ∈ [0, 1]} of Mn such that

u0 = 1, u1 = 1A and ‖[h(f), ut]‖ < ǫ

for all f ∈ F and t ∈ [0, 1]. Moreover,

Length({ut}) ≤ 2π + ǫπ.

3 Almost multiplicative maps from C(X) into interval algebras

Lemma 3.1. Let X be a compact metric space, let G ⊂ K1(C(X)) be a finitely generated
subgroup generated by {s1, s2, ..., sm(X)}. For any ǫ > 0, any finite subset F ⊂ C(X) and any
finite subset P ⊂ K(C(X)), there exists η > 0 satisfying the following: For any 1 > σ > 0, there
exists d > 0, for any α : KK(C(X) ⊗ C(T),C) = HomΛ(K(C(X) ⊗ C(T),K(C)) and for any
unital homomorphism ϕ : C(X) →Mn for some integer n ≥ 1 for which

µτ◦ϕ(Or) ≥ σ (e 3.18)

for any open balls Or with radius r ≥ η, where tr is the normalized trace on Mn, and

max{|α(gi)| : 1 ≤ i ≤ m(X)}/n < d, (e 3.19)

there exists a unitary u ∈Mn such that

‖[ϕ(f), u]‖ < ǫ for all f ∈ F and Bott(ϕ, u)|P = α|P . (e 3.20)

Proof. Let ǫ > 0 and F ⊂ C(X) be a finite subset. Let ǫ1 = min{ǫ/2, δC(X),P,b} and let
F1 = F ∪ FC(X),P,b.

Let η > 0 be given by 2.8 associated with ǫ/16 (in place of ǫ) and F . Let σ > 0. Let γ > 0,
δ > 0, G, P ⊂ K(C(X)) and H ⊂ C(X) be given by 2.8 associated with the above ǫ/16 (in place
of ǫ), η1 > 0 (in place of η) and σ/2. For convenience, we may assume that H∪F ⊂ G. We may
assume that δ < min{ǫ/2, 1/4}, ‖g‖ ≤ 1 if g ∈ G and 1C(X) ∈ G.

Let G1 = {g⊗f : g ∈ G and f = 1, z, z∗} ⊂ C(X)⊗C(T), where z is the identity function on
the unit circle. We may also assume that (δ,G1,P1) is a KL-triple for C(X)⊗C(T). Moreover,
we may assume that δ < δC(X),P,b and G ⊃ FC(X),b.

Suppose that C(X) = limn→∞C(Yn), where each Yn is a finite CW complex. Let ım :
C(Ym) → C(X) be the unital homomorphism induced by the inductive limit system. We may
assume that there is a finite subset G′ ⊂ C(Ym) and there is a finite subset P ′ ⊂ K(C(Ym))
such that ım(G′) ⊃ G and [ım](P ′) ⊃ P. We may also assume that there are s′1, s

′
2, ..., s

′
m(X) ∈
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K1(C(Ym)) such that (ım)∗1(s
′
j) = sj, j = 1, 2, ...,m(X). Let G′

1 = {g ⊗ f : g ∈ G′ and f =
1, z, z∗}. We may further assume that (δ,G′) is a KK-pair for C(Ym)⊗ C(T).

Suppose that Ym is the disjoint union of finitely many connected CW complexes Z1, Z2, ..., Zl.
Without loss of generality, we may assume that there is, for each i, a finite subset G(i) ⊂ C(Zi)
such that ⊕l

i=1G(i) = G′ and there is a finite subset P ′
i ⊂ K(C(Zi)) such that ⊕l

i=1P ′
i = P ′.

Choose ξi ∈ Zi such that ξi ∈ Y, i = 1, 2, ..., l.

Let N(δ/4,G(i)
1 ,P ′

i) be given by Lemma 10.2 of [18] for C(T× Zi). Define

N(δ/4,G′
1,P ′) =

l∑

i=1

N(δ/4,G(i)
1 ,P ′

i).

Let

d = min{σ/2, γ} · 1

N(δ/4,G′
1,P ′)

.

Let α be as in the statement and let

k = max{|α(si)| : i = 1, 2, ...,m(X)}.

Note that, if x ∈ kerρC(Ym), then h∗0(x) = 0. Let Y be the compact subset of Ym such that
ım(C(Ym)) = C(Y ). Denote by ı : C(Y ) → C(X) the embedding given by ım. Let s : X → Y
be the surjective map such that ı(f)(x) = f(s(x)) for all f ∈ C(Ym) and x ∈ X.

Choose β ∈ HomΛ(K(C(Ym)⊗ C(T)),K(C)) defined as

β|K(C(Ym)) = [H] (e 3.21)

for some point-evaluation (at ξ1, ξ2, ..., ξl) H : C(Ym) →MK (for some integer K ≥ 1) and

β|β(K(C(Ym))) = α ◦ [ım]|β(K(C(Ym))) (e 3.22)

(see 2.10 of [17] for the definition of β). Let G1 = {g⊗ 1 : g ∈ G}∪ {z1} ⊂ C(Ym)⊗C(T), where
z1 = 1⊗ z and z is the identity function on the unit circle. Let L = kN(δ,G′

1,P ′).
It follows from Lemmas 10.2 of [18] that there exists a unital δ/4-G′

1-multiplicative contractive
completely positive linear map Φ : C(Ym)⊗C(T) →ML such that

[Φ]|K(C0(Z)) = β|K(C0(Z)), (e 3.23)

where Z = Y × T \ ∪li=1{ξi × 1C(T)} and where 1 is the point in the unit circle. Define ϕ′
0 :

C(X) →ML by ϕ′
0(f) = Φ(f ⊗ 1C(T)) for all f ∈ C(X). Define

u0 = L(1C(X) ⊗ z)(L(1C(X) ⊗ z∗)L(1C(X) ⊗ z))1/2 = 〈L(1C(X) ⊗ z)〉.

Then
‖u0 − L(1C(X) ⊗ z)‖ < δC(X),P,b.

Now suppose that ϕ : C(X) →Mn for some integer n ≥ 1 for which

µtr◦ϕ(Or) ≥ σ (e 3.24)

for all open balls Or with radius r ≥ η, where tr is the normalized tracial state on Mn and

k/n < d.
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Note that n ≥ L. We may write that

ϕ(f) =
n∑

i=1

f(ξi)pi for all f ∈ C(X), (e 3.25)

where {p1, p2, ..., pn} is a set of mutually orthogonal rank one projections and ξi ∈ X, i =
1, 2, ..., n. Define ϕ′ : C(X) →Mn−L defined by

ϕ′(f) =
n−L∑

i=1

f(ξi)pi for all f ∈ C(X). (e 3.26)

Define ϕ1 : C(X) →Mn by

ϕ1(f) = ϕ′(f)⊕ ϕ0(f) for all f ∈ C(X). (e 3.27)

Since k/n < d ≤ γ(k/L), L/n < γ. Therefore one computes that

|τ ◦ ϕ(g) − τ ◦ ϕ1(f)| < γ for all g ∈ H. (e 3.28)

Moreover, since k/n < d ≤ (σ/2)k/L, L/n < σ/2. Therefore, by (e 3.24),

µtr◦ϕ1(Or) ≥ σ/2

for all r ≥ η.
It follows from 2.8 (also using (e 3.21)) that there is a unitary w ∈Mn such that

‖Adw ◦ ϕ1(f)− ϕ(f)‖ < ǫ/2 for all f ∈ F . (e 3.29)

Put

u = w∗(diag(

n−L
︷ ︸︸ ︷

1, 1, ..., 1, u0))w. (e 3.30)

One check that this unitary u meets all the requirements.

The following is a folklore.

Lemma 3.2. Let X be a compact metric space, let ηi > 0 and σi > 0 (i = 1, 2, ...,m) with
η1 > η2 > · · · > ηm and σ1 > σ2 > · · · > σm, and let 0 < λ1, λ2 < 1. There exists δ > 0 and a
finite subset G ⊂ C(X) satisfying the following:

Suppose that A is a unital C∗-algebra with T (A) 6= ∅ and suppose that ϕ,ψ : C(X) → A are
two unital positive linear maps such that

µτ◦ϕ(Or) ≥ σj (e 3.31)

for all r ≥ ηj , j = 1, 2, ...,m, and

|τ ◦ ϕ(g) − τ ◦ ψ(g)| < δ for all g ∈ G. (e 3.32)

Then,
µτ◦ψ(Or) ≥ λ1σj

for all r ≥ 2(1 + λ2)ηj , j = 1, 2, ...,m.

9



Proof. To simplify the proof, without loss of generality, we will prove only for the case that
m = 1. The general case follows by taking minimum of m δ’s and the union of m G′s.

There are x1, x2, ..., xK ∈ X such that

∪Kk=1O(xk, η) ⊃ X.

There are f1, f2, ..., fK ∈ C(X) with 0 < fk ≤ 1 such that fk(x) = 1 if x ∈ O(xk, η) and
fk(x) = 0 if dist(x, xk) > (1 + λ2)η. Choose δ = (1− λ1)σ1 and G = {f1, f2, ..., fK}.

Now suppose that ϕ,ψ : C(X) → A are two unital positive linear maps which satisfy the
assumption (e 3.31) and (e 3.32).

Let x ∈ X and consider O(x, r) for some r ≥ 2(1 + λ2)η. Then there exists xk such that
dist(x, xk) < η. This implies that

O(xk, (1 + λ2)η) ⊂ O(x, r).

Thus

µτ◦ψ(O(x, r)) ≥ τ ◦ ψ(fk) > τ ◦ ϕ(fk)− (1− λ1)σ1 (e 3.33)

≥ µτ◦ϕ(O(xk, η))− (1− λ1)σ1 (e 3.34)

≥ λ1σ1. (e 3.35)

for all τ ∈ T (A).

Remark 3.3. Note that in the above lemma, we insist that δ and G do not depend on ϕ.
Otherwise one can have better estimates.

Lemma 3.4. Let X be a compact metric space, let ∆ : (0, 1) → (0, 1) be a nondecreasing
function, let η > 0 and let 0 < λ1, λ2 < 1. There exists δ > 0 and a finite subset G ⊂ C(X)
satisfying the following:

Suppose that A is a unital C∗-algebra with T (A) 6= ∅ and suppose that ϕ,ψ : C(X) → A are
two unital positive linear maps such that

µτ◦ϕ(Or) ≥ ∆(r) (e 3.36)

for all r ≥ η and

|τ ◦ ϕ(g) − τ ◦ ψ(g)| < δ for all g ∈ G. (e 3.37)

Then,
µτ◦ψ(Or) ≥ λ1∆(r/2(1 + λ2))

for all r ≥ 2(1 + λ2)η.

Proof. Let η > 0, ∆ and 0 < λ1, λ2 < 1 be given. Choose λ0 > 0 such that 0 < λ0 < λ2. Let
1 > r1 > r2 > · · · > rN > 0 such that η > rN and

ri+1/ri >
1 + λ0
1 + λ2

, i = 1, 2, ...., N − 1.

Put ηj = rj and σj = ∆(ηj), j = 1, 2, ..., N − 1.
Let δ > 0 and G be required by 3.2 for ηj and σj (j = 1, 2, ..., N),λ1 and λ2.
Now suppose that ϕ,ψ satisfy (e 3.36) and (e 3.37). By applying 3.2, we conclude that

µτ◦ψ(Or) ≥ λ1σj
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for all τ ∈ T (A) and all r ≥ 2(1 + λ0)ηj , j = 1, 2, ..., N.
Now suppose that r ≥ 2(1 + λ2)η > 2(1 + λ0)η. Then

r

2(1 + λ0)
> η.

We may assume that, for some j,

ηj >
r

2(1 + λ0)
> ηj+1.

Then

µτ◦ψ(Or) > λ1σj+1 = λ1∆(ηj+1) (e 3.38)

≥ λ1∆(ηj(
1 + λ0
1 + λ2

)) (e 3.39)

≥ λ1∆(
r

2(1 + λ2)
) (e 3.40)

for all τ ∈ T (A).

Lemma 3.5. Let u ∈ CU(Mn(C([0, 1])) be a unitary such that

‖u(0)u(t)∗ − 1‖ < 1 for all t ∈ [0, 1]. (e 3.41)

Suppose that u(0)u(1)∗ = exp(
√
−1h) with ‖h‖ < 2 arcsin(1/2). Then

Tr(h) = 0.

Proof. Write u = exp(
√
−1a), where a ∈Mn(C([0, 1]) is a selfadjoint element. It follows that

(
1

2π
)Tr(a(t)) ∈ Z.

Therefore Tr(a(t)) is a constant. There exists a selfadjoint element b ∈Mn(C([0, 1]) such that

u(0)u(t)∗ = exp(
√
−1b(t)) and ‖b‖ < 2 arcsin(1/2).

However, u(0)u(t)∗ ∈ CU(Mn(C([0, 1])). Thus, from what have been proved above, ( 1
2π )Tr(b(t))

is a constant. Since b(0) = 0,

(
1

2π
)Tr(b(t)) = 0 for all t ∈ [0, 1].

Note that h = b(1). Therefore
Tr(h) = 0.

Theorem 3.6. Let X be a compact metric space, let F ⊂ C(X) be a finite subset and let
ǫ > 0 be a positive number. There exists η1 > 0 satisfying the following: for any σ1 > 0,
there exists η2 > 0 satisfying the following: for any σ2 > 0, there exists η3 > 0 satisfying the
following: for any σ3 > 0, there exists η4 > 0 satisfying the following: For any σ4 > 0, there
exists γ1 > 0, γ2 > 0, δ > 0, a finite subset G ⊂ C(X) and a finite subset P ⊂ K(C(X)) a
finite subset H ⊂ C(X) and a finite subset U ⊂ Uc(K1(C(X))) for which [U ] ⊂ P satisfying
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the following: For any two unital δ-G-multiplicative contractive completely positive linear maps
ϕ,ψ : C(X) →Mn(C([0, 1]) such that

[ϕ]|P = [ψ]|P = [h]|P (e 3.42)

for some unital homomorphism h : C(X) →Mn(C([0, 1])),

µτ◦ϕ(Or) ≥ σi, µτ◦ψ(Or) ≥ σi, (e 3.43)

for all τ ∈ T (Mn(C([0, 1]))) and for all r ≥ ηi, i = 1, 2, 3,

|τ ◦ ϕ(g) − τ ◦ ψ(g)| < γ1 for all g ∈ H and (e 3.44)

dist(〈ϕ(u)〉, 〈ψ(u)〉) < γ2 for all u ∈ U , (e 3.45)

there exists a unitary W ∈Mn(C([0, 1])) such that

‖Wϕ(f)W ∗ − ψ(f)‖ < ǫ for all f ∈ F . (e 3.46)

(Note, as stated in 2.1, ϕ and ψ in (e 3.44) is in fact ϕ⊗ idMk
and ψ⊗ idmk

for some integer
k ≥ 1. This will be used in the proof below.)

Proof. Put B =Mn(C([0, 1]).
We may write C(X) = limn→∞(C(Yn), ın), where Yn is a finite CW complex. Let ǫ > 0 and a

finite subset F ⊂ C(X) be given. Without loss of generality, we may assume that F ⊂ ın(C(Yn))
for some n. Let η′1 > 0 (in place of η) be required by 2.11 for ǫ/32 (in place of ǫ) and F .

Let η1 = η′1/3. Let σ1 > 0 and let σ′1 = σ1/2 > 0. Let δ1 > 0 (in place of ǫ), G1 ⊂ C(X) (in
place of G) be a finite subset and let P0 ⊂ K(C(X)) (in place of P) be a finite subset required
by 2.11 for ǫ/32 (in place of ǫ), F , η′1 and σ′1. We may assume that δ1 < ǫ/32.

There exists a finite CW complex Y, a unital homomorphism ı : C(Y ) → C(X) and a finite
subset F ′ ⊂ C(Y ) such that ı(F ′) = F and [ı](K(C(Y ))) ⊃ P0 (by choosing Y = Yn for some
large n).

Let 0 < δ2 < δC(Y ),b and G′
2 ⊃ FC(Y ),b such that (δ2,G′

2) forms a KK-pair for C(Y ).
Let P ′

0 ⊂ K(C(Y )) be such that δC(Y ),b = δC,P ′

0,b
. To simplify the notation, without loss of

generality, we may assume that [ı](P ′
0) = P0. Put G2 = ı(G′

2).
Denote by z ∈ C(T) the identity function on the unit circle. We may also assume that, for any

δ2-{z, 1} × G2-multiplicative contractive completely positive linear map Λ : C(T) ⊗ C(Y ) → C
(for any unital C∗-algebra C with T (C) 6= ∅), [Λ] is well defined and

τ([Λ(g)]) = 0

for all g ∈ Tor(K1(C(Y ))) (which is a finite subgroup).
Furthermore, we may assume that δ2 is so small that if ‖uv − vu‖ < 3δ2, then the Exel

formula

τ(bott1(u, v)) =
1

2π
√
−1

(τ(log(u∗vuv∗))

holds in any unital C∗-algebra C with tracial rank zero and any τ ∈ T (C) (see Theorem 3.6 of
[16]). Moreover if ‖v1 − v2‖ < 3δ2, then

bott1(u, v1) = bott1(u, v2).

Let U = {g1, g2, ..., gk(X)} ⊂ Uc(K1(C(X)) be a finite subset such that {[g1], [g2], ..., [gk(X)]}
forms a set of generators for the finitely generated subgroup generated by P0 ∩K1(C(X)). We
assume that m(X) ≥ 1 is an integer and gi ∈ U(Mm(X)(C(X)). We may further assume that
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there are g′j (j = 1, 2, ..., k(X)) in Uc(K1(C(Y ))) such that ı(gj) = g′j , j = 1, 2, ..., k(X) (here
again we identify a set of unitaries with its image in U(C(Y ))/CU(C(Y )))). Furthermore, we
may assume that g′1, g

′
2, ..., g

′
k(X) generate K1(C(Y )). Let U0 ⊂ C(X) be a finite subset such that

U = {(ai,j) : ai,j ∈ U0}.

Let δu = min{1/256m(X)2 , δ1/16m(X)2, δ2/16m(X)2} and Gu = F ∪ G1 ∪ G2 ∪ U0.
Let η′2 > 0 (in place of η) required by 3.1 for δu (in place of ǫ) and Gu (in place of F). Put

η2 = η′2/3.
Let σ2 > 0 and let σ′2 = σ2/2. Let 1 > d > 0 be required by 3.1 for min{δ1/4, δ2/4} (in place

ǫ), Gu (in place of F), η2 and σ′2.
Let δ3 > 0 (in place of δ) and let G3 ⊂ C(T)⊗C(X) (in place of G) required by Lemma 10.3

of [18] for d/8 (in place of σ) and T × X (in place of X). Without loss of generality, we may
assume that

G3 = {z ⊗ g : g ∈ G′
4} ∪ {1 ⊗ g : g ∈ G4},

where G′
4 ⊂ C(X) is a finite subset (by choosing a smaller δ3 and large G3).

Let ǫ′1 > 0 (in place of δ) and let G′′
4 ⊂ C(X) (in place of G) be a finite subset required by

3.2 for η1, η2, σ1, σ2, 1/2 (in place of λ1) and 1/4 (in place of λ2).
Let ǫ′′1 = min{d/27m(X)2 , δu/2, δ3/2m(X)2, ǫ′1/2m(X)2} and let ǭ1 > 0 (in place of δ) and

G5 ⊂ C(X) (in place of F1) be a finite subset required by 2.8 of [17] for ǫ′′1 (in place of ǫ) and
Gu ∪ G′

4 ∪ G′′
4 (and C(X) in place of B). Put

ǫ1 = min{ǫ′1, ǫ′′1, ǭ1}.

Let η′3 > 0 (in place of η) be required by 2.8 for ǫ1/4 (in place ǫ) and G5 (in place of F).
Let η′′3 > 0 (in place of η1) be required by 2.9 for ǫ1/4 (in place of ǫ) and G5 (in place of F).

Let η3 = min{η′3, η′′3}. Let σ3 > 0. Let γ1 > 0 (in place of γ), δ4 > 0, G6 ⊂ C(X) (in place of G),
H ⊂ C(X) be a finite subset and let P1 ⊂ K(C(X)) (in place of P) be required by 2.8 for ǫ1/4
(in place of ǫ), G5 (in place of F), η3 (in place η) and σ3 (in place σ). Let η4 > 0 (in place of η2)
be required by 2.9 for ǫ1/4 (in place of ǫ), G5 (in place of F), η3 (in place of η1), σ3 (in place of
σ1). Let σ4 > 0. Let δ5 > 0, G7 ⊂ C(X) (in place of G),P2 ⊂ K(C(X)) (in place of P) required
by 2.9.

Let δ = min{ǫ1/4, δ4, δ5}, G = G5 ∪ G6 ∪ G7 ∪ H and P = P0 ∪ P1 ∪ P2. Let γ2 <
min{d/16m(X)2, δu/9m(X)2, 1/256m(X)2}. We may assume that (δ,G,P) is a KL-triple.

Now suppose that ϕ,ψ : C(X) → B for some integer n are two unital δ-G multiplicative
contractive completely positive linear maps which satisfies the assumption for the above ηi, δi
(i = 1, 2, 3, 4), γi (i = 1, 2), P, U and H.

Choose a partition
0 = t0 < t1 < · · · tN = 1

such that

‖πt ◦ ϕ(g) − πti−1 ◦ ϕ(g)‖ < ǫ1/4 and ‖πt ◦ ψ(g) − πti−1 ◦ ψ(g)‖ < ǫ1/4 (e 3.47)

for all g ∈ G and for all t ∈ [ti−1, ti], i = 1, 2, ..., N. By applying 2.8, for each i, there exists a
unitary wi ∈Mn such that

‖wiπti ◦ ϕ(g)w∗
i − πti ◦ ψ(g)‖ < ǫ1/4 for all g ∈ G5 (e 3.48)

and, by 2.9, there are unital homomorphisms hi,1, hi,2 : C(X) →Mn such that

‖πti ◦ ϕ(g) − hi,1(g)‖ < ǫ1/4 and ‖πti ◦ ψ(g) − hi,2(g)‖ < ǫ1/4 for all g ∈ G5, (e 3.49)
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i = 0, 1, 2, ..., N. Moreover (by also applying 3.2),

µtr◦hi,j (Or) ≥ σ′k (e 3.50)

for all r ≥ η′k, k = 1, 2, j = 1, 2 and i = 1, 2, ...., N. Let ωj ∈ Mm(X)(B) be a unitary such that
ωj ∈ CU(Mm(X)(B) and

‖〈ϕ(g∗j )〉〈ψ(gj)〉 − ωj‖ < γ2, i = 1, 2, ..., k(X). (e 3.51)

Write
ωj = exp(

√
−1aj)

for some selfadjoint element aj ∈Mm(X)(Mn(C([0, 1]))), j = 1, 2, ..., k(X). Then

n(t⊗ Trm(X))(aj(s))

2π
∈ Z

(s ∈ [0, 1]), where t is the normalized trace on Mn. It follows that the above is a constant. In
particular,

n(t⊗ Trm(X))(aj(ti)) = n(t⊗ Trm(X))(aj(ti−1)), (e 3.52)

i = 1, 2, ..., N and j = 1, 2, ...,m(X).
Let Wi = wi ⊗ idMm(X)

, i = 0, 1, ...., N. Then

‖(hi,1 ⊗ idMm(X)
)(g∗j )Wi(hi,1 ⊗ idMm(X)

)(gj)W
∗
i − ωj(ti)‖ < 3m(X)2ǫ1 + 2γ2 < 1/32 (e 3.53)

It follows from (e 3.51) that there exists selfadjoint elements bi,j ∈Mnm(X) such that

exp(
√
−1bi,j) = ωj(ti)

∗(hi,1 ⊗ idMm(X)
)(g∗j )Wi(hi,1 ⊗ idMm(X)

)(gj)W
∗
i (e 3.54)

such that

‖bi,j‖ < 2 arcsin(3m(X)2ǫ1/4 + 2γ2), j = 1, 2, ...,m(X), i = 0, 1, ..., N. (e 3.55)

Note that

(hi,1 ⊗ idMm(X)
)(g∗j )Wi(hi,1 ⊗ idMm(X)

)(gj)W
∗
i = ωj(ti) exp(

√
−1bi,j), (e 3.56)

j = 1, 2, ...,m(X) and i = 0, 1, ..., N.
Then,

n

2π
(t⊗ TrMm(X)

)(bi,j) ∈ Z, , j = 1, 2, ...,m(X), i = 0, 1, ..., N. (e 3.57)

Let
λi,j =

n

2π
(t⊗ TrMm(X)

)(bi,j)

j = 0, 1, 2, ...,m(X), i = 1, 2, ..., N. Note that λi,j ∈ Z.

Define α
(0,1)
i : K1(C(Y )) → Z by mapping g′j to λi,j , j = 1, 2, ...,m(X) and i = 0, 1, 2, ..., N.

We write K0(C(T) ⊗ C(Y )) = K0(C(Y )) ⊕ β(K1(C(Y ))) (see 2.10 of [17] for the definition of
β). Define αi : K∗(C(T)⊗ C(Y )) → K∗(Mn) as follows

αi|K0(C(T)⊗C(Y ))([1]) = n, (e 3.58)

αi|kerρC(Y )
= 0, (e 3.59)

αi|β(K1(C(Y ))) = αi ◦ β|K1(C(Y )) = α
(0,1)
i , (e 3.60)

αi|K1(C(T)⊗C(Y )) = 0, (e 3.61)

(e 3.62)
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By the Universal Coefficient Theorem ([23]), there exists an element αi ∈ KK(C(T)⊗C(Y ),C)
such that αi|K∗(C(T)⊗C(Y ) = αi as defined above, i = 1, 2, ..., N. We estimate that

‖(w∗
i−1wi)hi−1,1(g) − hi−1,1(g)(w

∗
i−1wi)‖ < ǫ1 for all g ∈ G5.

Let Λi : C(T) ⊗ C(X) → Mn be a unital contractive completely positive linear map given by
the pair w∗

i−1wi and hi−1,1, i = 1, 2, ..., N (see 2.8 of [17]). Denote Vi,j = hi,1 ⊗ idMm(X)
(gj),

j = 1, 2, ...,m(X) and i = 0, 1, 2, ..., N. Note that

‖Wi−1V
∗
i−1,jW

∗
i−1Vi−1,jV

∗
i−1,jWiVi−1,jW

∗
i − 1‖ < 1/16 (e 3.63)

‖Wi−1V
∗
i−1,jW

∗
i−1Vi−1,jV

∗
i,jWiVi,jW

∗
i − 1‖ < 1/16 (e 3.64)

and there is a continuous path Z(t) of unitaries such that Z(0) = Vi−1,j and Z(1) = Vi,j. We
obtain a continuous path

Wi−1V
∗
i−1,jW

∗
i−1Vi−1,jZ(t)

∗WiZ(t)W
∗
i

which is in CU(Mnm(X)) for all t ∈ [0, 1]. It follows that

(1/2π
√
−1)(t⊗ TrMm(X)

)[log(Wi−1V
∗
i−1,jW

∗
i−1Vi−1,jZ(t)

∗WiZ(t)W
∗
i )]

is a constant. In particular,

(1/2π
√
−1)(t⊗ TrMm(X)

) log(Wi−1V
∗
i−1,jW

∗
i−1WiVi−1,jW

∗
i ) (e 3.65)

= (1/2π
√
−1)(t⊗ TrMm(X)

) log(Wi−1V
∗
i−1,jW

∗
i−1Vi−1,jV

∗
i,jWiVi,jW

∗
i ). (e 3.66)

Also

Wi−1V
∗
i−1,jW

∗
i−1Vi−1,jV

∗
i,jWiVi,jW

∗
i (e 3.67)

= (ωj(ti−1) exp(
√
−1bi−1,j))

∗ωj(ti) exp(
√
−1bi,j) (e 3.68)

= exp(−
√
−1bi−1,j)ωj(ti−1)

∗ωj(ti) exp(
√
−1bij). (e 3.69)

Note that, by (e 3.51) and (e 3.53),

‖ωj(ti−1)
∗ωj(ti)− 1‖ < 3(3ǫ′1 + 2γ2) < 3/32, (e 3.70)

j = 1, 2, ...,m(X), i = 1, 2, ..., N. By 3.5

(t⊗ Trm(X))(log(ωj(ti−1)
∗ωj(ti))) = 0 (e 3.71)

It follows that (by the Exel formula, using (e 3.66), (e 3.69) and (e 3.71))

(t⊗ Trm(X))(bott(Vi−1,j ,W
∗
i−1Wi)) (e 3.72)

= (
1

2π
√
−1

)(t⊗ Trm(X))(log(V
∗
i−1,jW

∗
i−1WiVi−1,jW

∗
i Wi−1)) (e 3.73)

= (
1

2π
√
−1

)(t⊗ Trm(X))(log(Wi−1V
∗
i−1,jW

∗
i−1WiVi−1,jW

∗
i )) (e 3.74)

= (
1

2π
√
−1

)(t⊗ Trm(X))(log(Wi−1V
∗
i−1,jW

∗
i−1Vi−1,jV

∗
i,jWiVi,jW

∗
i )) (e 3.75)

= (
1

2π
√
−1

)(t⊗ Trm(X))(log(exp(−
√
−1bi−1,j)ωj(ti−1)

∗ωj(ti) exp(
√
−1bij)) (e 3.76)

= (
1

2π
√
−1

)[(t⊗ Trk(n))(−
√
−1bi−1,j) + (t⊗ Trk(n))(log(ωj(ti−1)

∗ωj(ti)) (e 3.77)

+(t⊗ Trk(n))(
√
−1bi,j)] (e 3.78)

=
1

2π
[(t⊗ Trk(n))(−bi−1,j + bi,j). (e 3.79)
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In other words,

bott(Vi−1,j,W
∗
i−1Wi)) = −λi−1,j + λi,j (e 3.80)

j = 1, 2, ...,m(X) and i = 1, 2, ..., N.
Define β0 = 0, β1 = [Λ1]− α0 + α1 and

βi = [Λi]− αi−1 + αi, i = 1, 2, ..., N. (e 3.81)

Define κ0 = 0 and κi = αi + βi, i = 1, 2, ..., N. Note that αi, βi, κi ∈ KK(C(T)⊗ C(Y )),C) We
compute that

β1(g
′
j) = [Λ1](g

′
j)− λ0,j + λ1,j = 2(λ1,j − λ0,j), (e 3.82)

β2(g
′
j) = [Λ2](g

′
j)− λ1,j − λ2,j + β1(g

′
j) (e 3.83)

= 2(λ2,j − λ0,j) and (e 3.84)

βi(g
′
j) = 2(λi,j − λ0,j), i = 1, 2, ..., N and j = 1, 2, ..., k(X). (e 3.85)

It follows that

|τ ⊗ Trm(X)(κi([gi]))| = 4|λi,j/n|+ 2|λ0,j | < d/2, (e 3.86)

j = 1, 2, ..., N and i = 1, 2, ..., k(X). By applying 3.1, there is, for each i = 1, 2, ..., N, a unitary
zi ∈Mn such that

‖[zi, hi,1(g)]‖ < δu for all g ∈ Gu (e 3.87)

and Bott(zi, hi,1 ◦ ı) = κi, i = 0, 1, 2, ..., N − 1. (e 3.88)

Let Ui = zi−1w
∗
i−1wiz

∗
i , i = 1, 2, ..., N. Then

‖[Ui, hi−1,1(g)]‖ < min{δ1, δ2} for all g ∈ Gu, (e 3.89)

i = 1, 2, ..., N. Moreover

Bott(Ui, hi−1,1 ◦ ı) = Bott(zi,1, hi−1,1 ◦ ı) + Bott(w∗
i−1wi, hi−1,1 ◦ ı) (e 3.90)

+Bott(z∗i , hi−1,1 ◦ ı) (e 3.91)

= κi−1 + [Λi]− κi (e 3.92)

= αi−1 + βi−1 + [Λi]− αi − βi (e 3.93)

= αi−1 + βi−1 + [Λi]− αi − ([Λi]− αi−1 + αi + βi−1) (e 3.94)

= 0 (e 3.95)

i = 0, 1, 2, ..., N − 1. It follows that

Bott(Ui, hi−1,1)|P = 0, i = 1, 2, ..., N − 1.

By applying 2.11, there exists a continuous path of unitaries, {Ui(t) : t ∈ [ti−1, ti]} such that

Ui(ti−1) = 1, Ui(ti) = zi−1w
∗
i−1wiz

∗
i and (e 3.96)

‖U(t)hi−1,1(f)U(t)∗ − hi−1,1(f)‖ < ǫ/32 (e 3.97)

for all f ∈ F and for all t ∈ [ti−1, ti], i = 1, 2, ..., N. Define W ∈ B by

W (t) = wi−1z
∗
i−1Ui(t) for all t ∈ [ti−1, ti], i = 1, 2, ..., N.
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Note that W (ti−1) = wi−1z
∗
i−1, i = 1, 2, ..., N, and W (1) = wNz

∗
N . One checks that, by (e 3.49),

(e 3.96), (e 3.87), for t ∈ [ti−1, ti],

‖W (t)πt ◦ ϕ(f)W (t)∗ − πt ◦ ψ(f)‖ (e 3.98)

< ‖W (t)πt ◦ ϕ(f)W (t)∗ −W (t)πti−1 ◦ ϕ(f)W (t)∗‖ (e 3.99)

+‖W (t)πti−1 ◦ ϕ(f)W (t)∗ −W (t)hi−1,1(f)W (t)∗‖ (e 3.100)

+‖W (t)hi−1,1(f)W (t)∗ −W (ti−1)hi−1,1(f)W (ti−1)
∗‖ (e 3.101)

+‖W (ti−1)hi−1,1(f)W (ti−1)
∗ − wi−1hi−1,1(f)w

∗
i−1‖ (e 3.102)

+‖wi−1hi−1,1(f)w
∗
i−1 − wi−1πti−1 ◦ ϕ(f)w∗

i−1‖ (e 3.103)

+‖wi−1πti−1 ◦ ϕ(f)w∗
i−1 − πti−1 ◦ ψ(f)‖ (e 3.104)

+‖πti−1 ◦ ψ(f)− πt ◦ ψ(f)‖ (e 3.105)

< ǫ1/4 + ǫ1/4 + ǫ/32 + δu + ǫ1/4 + ǫ1/4 + ǫ1/4 < ǫ (e 3.106)

for all f ∈ F .

Remark 3.7. By an argument used in 5.1, we can remove the part of the assumption in (e 3.42)
that [ϕ]|P is the same as [h]|P for some homomorphism. At present, we do not use that form of
the statement.

4 Preparation for the proof

Lemma 4.1. There is an integer K > 0 satisfying the following condition: Suppose that u ∈
Mn(C([0, 1]) for some integer n ≥ K. Then, for any integer k > 0 and any L > 0, if cel(uk) ≤ L,
then cel(u) ≤ 2π/K + L/k + 6π.

Proof. (See the proof of 6.10 of [15].) It follows from Lemma 3.3 (1) of [22] that there exists a
selfadjoint element a ∈Mn(C([0, 1])) with ‖a‖ ≤ L such that

det(exp(ia)uk)(t) = 1

for every t ∈ [0, 1], provided that n ≥ K for some integer K ≥ 1. Fix one of such integer n. So

det((exp(ia/k)u)k)(t) = 1

for all t ∈ [0, 1]. This implies that, for each t ∈ [0, 1],

det(exp(ia(t)/k)u(t)) = exp(2πil(t)/k) (e 4.107)

for some integer l(t) ≤ k Suppose that b(t) = −2πl(t)/k. Then b(t) is a real valued continuous
function on [0, 1], whence it is a constant. Note that

exp(i(b(t)/n) exp(ia/k) = exp(i(b(t)/n + a/k)).

Then

det(exp(i(b(t)/n) exp(ia/k)u) = 1 (e 4.108)

(for all t ∈ [0, 1]). By 3.4 and 3.1 of [22],

cel(u) ≤ 2π/K + L/k + 6π. (e 4.109)
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Theorem 4.2. Let X be a compact metric space. Let ǫ > 0 and let F ⊂ C(X) be a finite subset.
Suppose that λ : Uc(K1(C(X))) → R+ is a map. There exist δ > 0, a finite subset G ⊂ C(X), a
finite subset P ⊂ K(C(X)), a finite subset of unitaries U ⊂ Uc(K1(C(X))) and an integer L > 0
satisfying the following condition: if ϕ,ψ : C(X) → C([0, 1],Mn) (for some integer n ≥ 1) are
two unital δ-G-multiplicative contractive completely positive linear maps such that

[ϕ]|P = [ψ]|P and dist(〈ϕ(u)〉, 〈ψ(u)〉) ≤ λ(u) (e 4.110)

for all u ∈ U , then there is a homomorphism Φ : C(X) → ML(Mn(C([0, 1]))) with finite
dimensional range and a unitary U ∈ML+1(Mn(C([0, 1],Mn))) such that

‖U∗diag(ϕ(f),Φ(f))U − diag(ψ(f),Φ(f))‖ < ǫ (e 4.111)

for all f ∈ F .

Proof. This follows from Theorem 3.2 of [7]. One takes B = Mn(C([0, 1])). Note that B has
stable rank one and K0-divisible rank T, where T : N ×N is defined by T (k,m) = [m/k] + 1.
Let K be the constant described in Lemma 3.4 of [22] (for d = 1). Pick a point ξ ∈ X. If
n ≥ K, we continue the argument below. If n < K, define ϕ0 : C(X) → MK−n(C([0, 1]) by
ϕ0(f) = f(ξ)idMK−n

for all f ∈ C(X). Replacing ϕ and ψ by ϕ ⊕ ϕ0 and ψ ⊕ ϕ0 and late
absorbing ϕ0, we see that we may assume that n ≥ K.

Then, by 4.1, B has exponential divisible rank E(L, k), where E(l, k) ≤ 2π/K + L/k + 6π.
It is also easy to see that cer(B) ≤ 2. Then define Λ : U(M∞(C(X)) → R+ as follows:

Let Π : U(M∞(C(X))) → K1(C(X)) be the quotient map and let J : K1(C(X)) →
∪∞
n=1U(Mn(C(X)))/CU(C(X)) be the splitting map (see 2.3). If v ∈ U(Mn(C(X))) and Π(v) 6=

0, define v0 = v(J ◦Π(v∗))c, where J ◦Π(v∗)c ∈ Uc(K1(C(X))). Define Λ : U(M∞(C(X))) → R+

as follows:

Λ(v) = 2cel(v) + 1 if v ∈ ∪∞
n=1U0(Mn(C(X))) and (e 4.112)

Λ(v) = λ(J ◦Π(v)c) + 6π + 2cel(v0) + 1 if Π(v) 6= 0, (e 4.113)

where cel(v) and cel(v0) is the exponential length of v and v0 in ∪∞
n=1U0(Mn(C(X))).

Note that, for any finite subset V ⊂ U(Mm(C(X))) (for some integer m ≥ 1), if δ is suffi-
ciently small and G is sufficiently large (depends only on V),

cel(ϕ(v)ψ(v)∗) ≤ 2cel(v) + 1/4 ≤ Λ(v) for all v ∈ V and Π(v) = 0. (e 4.114)

Otherwise, if Π(v) 6= 0, v = vcv0 for some vc ∈ Uc(K1(C(X))) and v0 ∈ U0(M∞(C(X))). Thus,
if vc ∈ U , δ is sufficiently small and G is sufficiently large (depends only on V and U),

cel(ϕ(v)ψ(v∗)) = cel(ϕ(vcv0)ψ(v
∗
0v

∗
c )) (e 4.115)

≤ cel(ϕ(v)ψ(v)∗) + 1/4 + cel(ϕ(vc)ψ(v
∗
c ) (e 4.116)

≤ 2cel(v) + 1/4 + 1/4 + λ(vc) + 6π ≤ Λ(v). (e 4.117)

Therefore we can apply Theorem 3.2 of [7] directly (and the point-evaluation f 7→ f(ξ)idMk

will be absorbed into Φ).

The following is a folklore. It is a special case of Theorem 3.2 of [7]. It also follows from 2.9.
We state here for the convenience for our proofs.
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Lemma 4.3. Let X be a compact metric space, let ǫ > 0 and let F ⊂ C(X) be a finite subset.
There exists δ > 0, a finite subset G ⊂ C(X) and a finite subset P ⊂ K(C(X)) which forms
a KL-triple for C(X) and an integer N satisfying the following: Suppose that ϕ : C(X) → F
is a unital δ-G-multiplicative contractive completely positive linear map, where F is a finite
dimensional C∗-algebra such that

[ϕ]|P = [H]|P
for some unital homomorphism H : C(X) → Mn. Then there exists a unital homomorphism
Φ : C(X) →MN (F ) and a unital homomorphism h : C(X) →MN+1(F ) such that

‖ϕ(f)⊕ Φ(f)− h(f)‖ < ǫ

for all f ∈ F .

Lemma 4.4. Let X be a compact metric space. Let λ : ∪∞
n=1U(Mn(C(X))) → R+ be a map.

For any ǫ > 0 and any finite subset F ⊂ C(X), there exist δ > 0 a finite subset G ⊂ C(X),
a finite subset P ⊂ K(C(X)) and a finite subset of unitaries U ⊂ Uc(C(X)), a finite subset
{x1, x2, ..., xm} ⊂ X and an integer L > 0 satisfying the following condition: if ϕ, ψ : C(X) → A
(for any unital separable simple C∗-algebraA with tracial rank at most one) are unital δ-G-
multiplicative contractive completely positive linear maps such that

[ψ]|P = [ϕ]|P and (e 4.118)

dist(〈ϕ(u)〉, 〈ψ(u)〉) ≤ λ(u) (e 4.119)

for all u ∈ U , then, for any set of mutually orthogonal projections p1, p2, ..., pm ∈ MmL(A) with
[pi] ≥ L[1A], i = 1, 2, ...,m, there is a unitary U ∈ML+1(A) such that

‖U∗diag(ϕ(f),H(f))U − diag(ψ(f),H(f))‖ < ǫ (e 4.120)

for all f ∈ F , where H(f) =
∑m

i=1 f(ξi)pi for all f ∈ C(X).

Proof. The proof follows exactly the same way as that of 4.2. Note that it follows from [19] that
Mj(A) has exponential rank 1 + ǫ for every integer j ≥ 1. Also, by [15], A has stable rank one,
K0-divisible rank one, exponential divisible rank E(L, k) = L/k + 8π + 1 (see 6.10 of [15], or
derive it from 4.1 directly). Thus Theorem 3.2 of [7] can also be applied as in the proof of 4.2.

Lemma 4.5. Let X be a compact metric space and let s1, s2, ..., sm ∈ kerρC(X) be a finite subset.
For any d > 0, there is δ > 0 and G ⊂ C(X) satisfying the following: For any unital C∗-algebra
A with T (A) 6= ∅ and any unital δ-G-multiplicative contractive completely positive linear map
L : C(X) → A, one has that

τ([L](sj)) < d for all τ ∈ T (A), j = 1, 2, ...,m. (e 4.121)

Proof. There is an integer m0 ≥ 1 and projections pi, qi ∈Mm0(C(X)) such that

[pi]− [qi] = si, i = 1, 2, ...,m.

Note that, for any τ ∈ T (A),

τ(pi) = τ(qi), i = 1, 2, ...,m.

Now suppose the lemma is false. Then there is d0 > 0, a sequence of unital C∗-algebras
An with T (An) 6= ∅, a sequence of δn-Gn-multiplicative contractive completely positive linear
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maps Ln : C(X) → An with
∑∞

n=1 δn < ∞ and ∪∞
n=1Gn is dense in C(X) such that, for some

τn ∈ T (An) and 1 ≤ j ≤ m such that

|τn(Ln ⊗ idMm0
)(pj − qj))| ≥ d0 (e 4.122)

for all n. Define L : C(X) → ∏∞
n=1An by L(f) = {Ln(f)} for all f ∈ C(X). Let π :

∏∞
n=1An →

∏∞
n=1An/ ⊕∞

n=1 An be the quotient map. Then π ◦ L : C(X) → ∏∞
n=1An/⊕∞

n=1 An is a unital
homomorphism. Therefore, for any tracial state t ∈ T (

∏∞
n=1An/⊕∞

n=1 An),

t((π ◦ L)⊗ idMm0
)(pj − qj)) = 0. (e 4.123)

Let Tn :
∏∞
n=1An → C be defined by Tn(a) = τn(πn(a)) for all a ∈ ∏∞

n=1An, where πn :
∏∞
n=1An → An is the projection to the n-coordinate. Then Tn is a tracial state. Note that, for

any a ∈ ⊕∞
n=1An,

lim
n→∞

Tn(a) = 0. (e 4.124)

Let T be a limit point of {Tn}. Then, by (e 4.124), T defines a tracial state on
∏∞
n=1An/⊕∞

n=1An.
Therefore, by (e 4.123),

T (((π ◦ L∗0)⊗ idMm0
)(pj − qj) = 0.

It then follows that, for some subsequence {nk},

lim
k→∞

τnk
((Ln ⊗ idMm0

(pj − qj)) = 0.

This contradicts with (e 4.122). The lemma follows.

When Ki(C(X)) (i = 0, 1) is finitely generated, the following follows from 10.2 of [18].
We made a modification so it also applies to the case that Ki(C(X)) (i = 0, 1) is not finitely
generated.

Lemma 4.6. Let X be a compact metric space. For any δ > 0, any finite subset G ⊂ C(X)
and any finite subset P ⊂ K(C(X)) for which the intersection of kerρC(X) and the subgroup
generated by P is generated by g1, g2, ..., gk such that (δ,G,P) is a KL-triple, there exists an
integer N(δ,G,P) satisfies the following:

For any unital δ-G-multiplicative contractive completely positive linear map L : C(X) →
B, where B = Mn, or B = Mn(C([0, 1]) (for any integer n ≥ 1) with K = max{|L(gi)| :
i = 1, 2, ..., k}, There exists an integer N(K) ≥ 1 satisfying the following: for any integer
N ≥ N(K)/n, there exists a unital δ-G-multiplicative contractive completely positive linear map
L0 : C(X) →MnN ⊂MN (B) ⊂ such that

N(K)

max{K, 1} ≤ N(δ,G,P) and (e 4.125)

([L] + [L0])|P = [H]|P (e 4.126)

for some unital homomorphism H : C(X) →M1+N (B) with finite dimensional range.

Proof. Write C(X) = limn→∞(C(Yn), where each Yn is a finite CW complex. We use ım :
C(Ym) → C(X) for the homomorphism given by the inductive limit system. Without loss
of generality, we may assume that G ⊂ ım(C(Ym)) for some m ≥ 1. Let G′ ⊂ C(Ym) be a
finite subset such that ım(G′) = G. We may further assume that P ⊂ [ım](K(C(Ym))) and
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P ′ ⊂ K(C(Ym)) is a finite subset such that [ım](P ′) = P. As defined, we also assume that (δ,G′)
is a KK-triple for C(Ym).

Let ım(C(Ym)) ∼= C(Y ), where Y is a compact subset of Ym. Note that ım induces an
embedding ı : C(Y ) → C(X). Denote by s : X → Y the surjective continuous map given by ı,
i.e, ı(f)(y) = f(s(y)) for all f ∈ C(Y ).

Suppose that Ym is a finite disjoint union of connected finite CW complexes Z1, Z2, ..., Zl. One
can choose ξi ∈ Zi such that ξi ∈ Y, i = 1, 2, ..., l. There are s1, s2, ..., sk ∈ ∪li=1K0(C(Zi \ {ξi}))
such that [ım](si) = gi, i = 1, 2, ..., k. Write K0(C(Zi \{ξi}) = Zk(i)⊕Gi, where Gi is the torsion
subgroup. Since K0(C) = Z and K1(C) = {0}, any homomorphism from Ki(C(Ym)) into Ki(C)
vanishes on Tor(Ki(C(Ym))), i = 0, 1. To simplify the notation, without loss of generality, we
may assume that s1, s2, ..., sk are the standard generators for ⊕l

i=1Z
(k(i). We may assume that

G′
i ⊂ C(Zi) is a finite subset such that ⊕l

i=1G′
i = P ′ and P ′

i ⊂ K(C(Ym)) is a finite subset such
that ⊕l

i=1P ′
i = P ′.

Applying 10.2 of [18] to each component Zi, we obtain an integer Ni(δ,G′
i,P ′

i) given by 10.2

of [18]. Let N(δ,G,P) =
∑l

i=1Ni(δ,G′
i,P ′

i).
Now let L : C(X) → B be a δ-G-multiplicative contractive completely positive linear map .

Put L′ = L ◦ ım : C(Ym) → Mn. Let κ ∈ HomΛ(K(C(Ym)),K(B)) be given by L′. Let κ1 ∈
KK(B,C) be given by a point-evaluation, if B =Mn(C([0, 1]), or κ1 is given by the identity, if
B =Mn. In either cases, one may view κ1 is an identity on K(B) = K(C). Put

K = max{|κ(sj)| : j = 1, 2, ..., k}.

It follows from 10.2 of [18] that there exists an integer N(K) ≥ 1 and unital δ-G′-multiplicative
contractive completely positive linear map L′

0 : C(Ym) →MK(n) such that

N(K)

max{K, 1} ≤ N(δ,G,P) and (e 4.127)

[L′
0]|K(C0(Zi\{ξi})) = −(κ1 × κ)|K(C0(Zi\{ξi})), i = 1, 2, ..., l. (e 4.128)

If N ≥ N(K)/n, by adding some point-evaluation, if necessarily, we may assume that L′
0 maps

C(Ym) into a C∗-subalgebra D ∼=MnN and D is a C∗-subalgebra of MN (B) with 1D = 1MN (B).
Then, viewing L′

0 maps C(Ym) into MN (B),

κ+ [L′
0]|K(C0(Zi\{ξi})) = 0. (e 4.129)

There is a point-evaluation h0 : C(Ym) →Mn+N (B) at {ξ1, ξ2, ..., ξl} such that

[L′ ⊕ L′
0] = [h0]. (e 4.130)

We may write

h0(f) =
l∑

i=1

f(ξi)pi for all f ∈ C(Ym),

where p1, p2, ..., pl are mutually orthogonal projections inMN+1(B). There is a unital contractive
completely positive linear map L0 : C(X) →MN (B) such that

L0 ◦ ım|C(Ym) = L′
0.

Note that L0 is δ-G-multiplicative. Define H : C(X) →MN+1(B) by

H(f) =

l∑

i=1

f(s(ξi))pi for all f ∈ C(X).
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Then
[L⊕ L0]|P = [H]|P .

Lemma 4.7. Let X be a compact metric space, let ǫ > 0, let F ⊂ C(X) be a finite subset.
There exists a finite subset {x1, x2, ..., xm} ⊂ X (m ≥ 1) satisfying the following: for any unital
homomorphism h0 : C(X) → C([0, 1],Mn) with finite dimensional range,

‖(h0 ⊕ h1)(f)−
m∑

i=1

f(xi)pi‖ < ǫ for all f ∈ F , (e 4.131)

where h1 : C(X) → C([0, 1],M(m−1)n) is a unital homomorphism with finite dimensional range
and {p1, p2, ..., pm} is a set of mutually orthogonal rank n projections.

Proof. Let η > 0 such that

|f(x)− f(x′)| < ǫ/4 for all f ∈ F ,

provided that dist(x, x′) < η. Let {x1, x2, ..., xm} be an η-dense subset of X. Suppose that
h0 : C(X) → C([0, 1],Mn) is a unital homomorphism with finite dimensional range. Then there
are y1, y2, ..., yn ∈ X and mutually orthogonal rank one projections e1, e2, ..., en such that

h0(f) =
n∑

i=1

f(yi)ei for all f ∈ C(X). (e 4.132)

Divide {y1, y2, ..., yn} into N disjoint subsets Y1, Y2, ..., YN with 1 ≤ N ≤ m such that

dist(yi, xj) < η, (e 4.133)

if yi ∈ Yj. Let Ej =
∑

yi∈Yj
ei and denote by Rj the rank of Ej, j = 1, 2, ..., N. Choose mutually

orthogonal projections q1, q2, ..., qm ∈ C([0, 1],M(m−1)n) such that rank of qj = n − Rj, j =
1, 2, ..., N and rank qj = n if N < j ≤ n. Note

∑m
j=1 qj = 1M(m−1)n

. Define h1 : C(X) →
C([0, 1],M(m−1)n) by

h1(f) =
n∑

j=1

f(xj)qj for all f ∈ C(X).

Let pj = Ej + qj if 1 ≤ j ≤ N and pj = qj if N < j ≤ m. Note that pj has rank n for
j = 1, 2, ...,m. One then checks that

‖(h0 ⊕ h1)(f)−
m∑

k=1

f(xk)pk‖ < ǫ for all f ∈ F .

Lemma 4.8. Let X be a compact metric space, let P ⊂ K(C(X)) be a finite subset and let G
be the subgroup generated by P. Suppose ∆ : (0, 1) → (0, 1) is a nondecreasing function, η > 0.
and λ1, λ2 > 0 are given. Suppose that g1, g2, ..., gk are generators of G ∩ kerρC(X).

Suppose that L, Λ : C(X) → A (for some unital separable simple C∗-algebra with tracial
rank at most one) are two δ-G-multiplicative contractive completely positive linear map for which
[L](gi) and [Λ](gi) are well defined (i = 1, 2, ..., k), where δ is a positive number and G is a finite
subset of C(X),

|τ([L](gi))| < σ and |τ([Λ](gi))| < σ for all τ ∈ T (A), i = 1, 2, ..., k, (e 4.134)
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for some 1 > σ > 0, and

µτ◦L(Or) ≥ ∆(r), µτ◦Λ(Or) ≥ ∆(r) (e 4.135)

(e 4.136)

for all τ ∈ T (A) and for all r ≥ η.
Then, for any ǫ > 0 and any finite subset F , any mutually orthogonal projections e1, e2, ..., eN ,

any η > 0, any finite subset H ⊂ A and R0 > 1, there exists a projection p ∈ A and a unital
C∗-subalgebra B = ⊕m

j=1C(Xj,Mr(j)), where Xj = [0, 1], or Xj is a single point, with 1B = p,
mutually orthogonal projections e′1, e

′
2, ..., e

′
N ∈ B and a unital (δ+ǫ)-G-multiplicative contractive

completely positive linear map ψ1, ψ2 : C(X) → B such that

‖L(f)− [(1− p)L(f)(1− p) + ψ1(f)]‖ < ǫ, (e 4.137)

‖Λ(f)− [(1− p)Λ(f)(1− p) + ψ2(f)‖ < ǫ for all f ∈ F , (e 4.138)

τ(1− p) < η, τ(e′i) ≥ min{(1− λ1)τ(ei) : τ ∈ T (A)} for all τ ∈ T (A) (e 4.139)

r(j) ≥ R0, j = 1, 2, ..., k, (e 4.140)

‖peip− e′i‖ < ǫ, tj,x(e
′
i) ≥ min{(1− λ1)τ(ei) : τ ∈ T (A)} (e 4.141)

|tj,x([ψ1](gi))| < (1 + λ1)σ, |tj,x([ψ2](gi))| < (1 + λ1)σ (e 4.142)

j = 1, 2, ..., k and x ∈ Xj (e 4.143)

µtj,x◦ψ1(Or) ≥ (1− λ1)∆(r/2(1 + λ2)), µtj,x◦ψ2(Or) ≥ (1− λ1)∆(r/2(1 + λ2)) (e 4.144)

for all r ≥ 2(1 + λ2)η (We use tj,x for τj,x ⊗ TrR on B ⊗MR, where tj,x(f) = t ◦ f(x) for all
f ∈ C(Xj ,Mr(j)), for all x ∈ Xj and t is the normalized trace on Mr(j) and TrR is the standard
trace on MR.)

Moreover, for any ǫ0 > 0, one may assume that

‖pa− ap‖ < ǫ0 and pap ∈ǫ0 B for all a ∈ H.

If furthermore, [L]|P = [Λ]|P (in KK(C(X), A), then, by taking small δ and larger G, one
may further require that

[ψ1]|P = [ψ2]|P in KK(C(X), B).

Proof. The proof is a modification of that of Lemma 9.7 of [18]. We repeat many arguments
here. Let pj , qj ∈MR(C(X)) such that

[pj]− [qj] = gj , j = 1, 2, ..., k,

for some integer R ≥ 1. There exists of a sequence of projections pn ∈ A such that

lim
n→∞

‖cpn − pnc‖ = 0 for all c ∈ A, (e 4.145)

and there exists a sequence of C∗-subalgebras Bn = ⊕m(n)
j=1 C(Xj,n,Mr(j,n)) (where Xj,n = [0, 1]

or X is a single point) with 1Bn = pn such that

lim
n→∞

dist(pncpn, Bn) = 0 and (e 4.146)

lim
n→∞

sup
τ∈T (A)

{τ(1− pn)} = 0. (e 4.147)

Moreover, by 3.3 of [15], we may also assume that r(j, n) ≥ R0 for all j. For sufficiently large n,
there exists a contractive completely positive linear map L′

n : pnApn → Bn such that

lim
n→∞

‖L′
n(a)− pnapn‖ = 0 for all a ∈ A
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(see 2.3.9 of [11]). There are (see 2.55 and 2.5.6 of [11]) mutually orthogonal projections ei,n ∈ Bn
such that

lim
n→∞

‖pneipn − e′i,n‖ = 0, i = 1, 2, ..., N.

We have

lim
n→∞

‖L(f)− [(1− pn)L(f)(1 − pn) + L′
n ◦ L(f)]‖ = 0 and (e 4.148)

lim
n→∞

‖Λ(f)− [(1− pn)Λ(f)(1− pn) + L′
n ◦ Λ(f)]‖ = 0 for all f ∈ C(X). (e 4.149)

Define L′
n,R :MR(A) →MR(A) by L

′
n⊗idMR

and LR :MR(C(X)) →MR(A) by LR = L⊗idMR
.

Suppose that there exists a subsequence {nk}, {jk} and {xk} ∈ [0, 1] such that

|tjk,xk(L′
nk,R

◦ LR(pi − qi))| ≥ (1 + λ1)σ (e 4.150)

for all k. Define a state Tk : A → C by Tk(a) = tjk,xk(a), k = 1, 2, .... Let T be a limit point.
Note Tk(1A) = 1. Therefore T is a state on A. Then, by (e 4.150),

|T ([L](gi))| ≥ (1 + λ1)σ. (e 4.151)

However, it is easy to check that T is a tracial state. This contradicts with (e 4.134). Put
ψ1 = L′

n ◦ L and ψ2 = L′
n ◦ Λ for some large n. Then we have shown (for the choice of large n)

that (e 4.137), (e 4.138) and (e 4.143) hold.
A similar argument shows that, for some sufficiently large n,

tj,x(e
′
i,n) ≥ min{(1− λ1)τ(ei) : τ ∈ T (A)},

i = 1, 2, ..., N, for all x ∈ Xj and j = 1, 2, ...,m(n).
Moreover, a similar argument shows that, for any finitely many f1, f2, ...., fN ∈ C(X) such

that 0 < fi ≤ 1, i = 1, 2, ..., N, we may assume (by choosing large n) that

tj,x ◦ ψ1(fk) ≥ (1− λ1/2)min{τ(L(fk)) : τ ∈ T (A)} and (e 4.152)

tj,x ◦ ψ2(fk) ≥ (1− λ1/2)min{τ(Λ(fk)) : τ ∈ T (A)} (e 4.153)

for all x ∈ Xj, j = 1, 2, ...,m. By choosing sufficiently many (but finitely many), using the
argument in the proof of 3.2, we may assume that

µtj,x◦ψi
(Or) ≥ (1− λ1)∆(η/2(1 + λ2)) (e 4.154)

for all r ≥ 2(1 + λ2)η and for all x ∈ X, j = 1, 2, ...,m and i = 1, 2.
So the first part of the lemma follows by choosing B to be Bn, p to be pn and ψ1 to be L′

n ◦L
and ψ2 to be L′

n ◦Λ for some sufficiently large n. Note, by (e 4.145) and (e 4.146), for any ǫ0 > 0
and any finite subset H, we can assume that

‖pa− ap‖ < ǫ0 and pap ∈ǫ0 B

for all a ∈ H.
To see the last part of the lemma holds, taking a commutative C∗-algebra C and considering

the maps L⊗ idMm(C) and Λ⊗ idMm(C) from C(X) into A⊗Mm(C). There is K0 ≥ 1 such that,
if x ∈ Tor(Ki(C(X)))∩G, then K0x = 0. Let C1, C2, ..., CK0! be unital commutative C∗-algebra
such that K0(Cj) = Z⊕Z/jZ and K1(Cj) = {0}, j = 1, 2, ...,K0!. Let m ≥ 1 be an integer such
that a set of generators of K0(C(X) ⊗ Cj) ∩ G and K1(C(X) ⊗ Cj) ∩G can be represented by
projections and unitaries in Mm(C(X)⊗ Cj) = C(X)⊗ Cj ⊗Mm, j = 1, 2, ...,K0!.
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Choose 0 < ǫ1 < ǫ and a finite subset F1 ⊃ F (which depends on K0 and m above). Then
one applies the first part of the lemma for this ǫ1 and F1. For a finite subset of projections
E1, E2, ..., EK ∈ C(X) ⊗ Cj ⊗Mm, if in addition that [L]|P = [Λ]|P (with sufficiently small δ
and sufficiently large G), there are partial isometries W1,W2, ...,WK ∈ A⊗Cj ⊗Mm+R for some
integer R ≥ 0 such that

WiW
∗
i = E′

i ⊕ idMR(Cj) and W ∗
i Wi = E′′

i ⊕ idMR(Cj),

where E′
i and E

′′
i are two projections such that

‖E′
i − L⊗ idMm(Cj)(Ei)‖ < 1/16 and ‖E′′

i − Λ⊗ idMm(Cj )(Ei)‖ < 1/16,

i = 1, 2, ...,K.
Fix ǫ0 > 0. One then chooses a large H so that

‖pa− ap‖ < ǫ0 and pap ∈ǫ0 B

imply that

‖(p ⊗ idMm+R(Cj ))Wi −Wi(p⊗ idMR(Cj))‖ < ǫ1, (e 4.155)

‖(p ⊗ idMm+R(Cj ))(E
′
i ⊗ idMR(Cj))− (E′

i ⊗ idMR(Cj))(p⊗ idMm+R(Cj))‖ < ǫ1 and (e 4.156)

‖(p ⊗ idMm+R(Cj ))(E
′′
i ⊗ idMR(Cj))− (E′′

i ⊗ idMR(Cj))(p ⊗ idMm+R(Cj ))‖ < ǫ1, (e 4.157)

‖(p ⊗ idMm(Cj))E
′
i − E′

i(p ⊗ idMm(Cj))‖ < ǫ1 and (e 4.158)

‖(p ⊗ idMm(Cj))E
′′
i − E′′

i (p⊗ idMm(Cj))‖ < ǫ1 (e 4.159)

as well as

(p⊗ idMm(Cj ))E
′
i(p ⊗ idMm(Cj)) ∈ǫ1 B ⊗Mm(Cj), (e 4.160)

(p⊗ idMm(Cj ))E
′′
i (p ⊗ idMm(Cj)) ∈ǫ1 B ⊗Mm(Cj), (e 4.161)

(p⊗ idMm+R(Cj))Wi(p ⊗ idMm+R(Ci))(p ⊗ idMm+R(Cj)) ∈ǫ1 B ⊗Mm+R(Cj), (e 4.162)

(p⊗ idMm+R(Cj))(E
′
i ⊗ idMR(Cj))(p ⊗ idMm+R(Cj)) ∈ǫ1 B ⊗Mm+R(Cj) and (e 4.163)

(p⊗ idMm+R(Cj))(E
′′
i ⊗ idMR(Cj ))(p ⊗ idMm+R(Cj)) ∈ǫ1 B ⊗Mm+R(Cj). (e 4.164)

It follows that (with small ǫ1) there are projections e′i, e
′′
i ∈ B ⊗Mm(Cj) such that

‖e′i − (p⊗ idMm(Cj))E
′
i(p⊗ idMm(Cj))‖ < 2ǫ1, ‖e′′i − (p⊗ idMm(Cj))E

′′
i (p⊗ idMm(Cj ))‖ < 2ǫ1 and

[ei] = [e′i] in K0(B).

Therefore, one has
[ψ1]([Ei]) = [ψ2]([Ei]), i = 1, 2, ...,K.

From this, one concludes that one may require that

[ψ1 ⊗ idCj)]|K0(C(X)⊗Cj )∩G = [ψ2 ⊗ idCj
]|K0(C(X)⊗Cj )∩G,

j = 1, 2, ...,K0!. A similar argument shows that one may also require that

[ψ1 ⊗ idCj
]|K1(C(X)⊗Cj )∩G = [ψ2 ⊗ idCj

]|K1(C(X)⊗Cj )∩G,

j = 1, 2, ...,K0!. It follows that one may require that

[ψ1] = [ψ2] in KK(C(X), B).
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5 The main results

Lemma 5.1. Let X be a compact metric space, let ǫ > 0, ǫ0 > 0, let {x1, x2, ..., xm} ⊂ X, let
F ⊂ C(X) be a finite subset and let ∆ : (0, 1) → (0, 1) be an increasing map with limt→0∆(t) = 0.
Let P ⊂ K(C(X)) be a finite subset, K ≥ 1 be an integer and let η0 > 0. Then, there exists
η > 0, δ > 0, a finite subset G ⊂ C(X) satisfying the following: For any unital δ-G-multiplicative
contractive completely positive linear maps L,Λ : C(X) → A for some unital separable simple
C∗-algebra A with tracial rank at most one for which

[Λ]|P = [L]|P and µτ◦L(Or), µτ◦L(Or) ≥ ∆(r) (e 5.165)

for all open balls Or with radius 1 > r ≥ η, and, for any ǫ00 > 0 and any finite subset H ⊂ A,
there exist mutually orthogonal projections
P1, P2, P3, p1, p2, ..., pm ∈ A with P1 ⊕ P2 ⊕ P3 ⊕

∑m
i=1 pi = 1A,

τ(P3) > 1− ǫ0 for all τ ∈ T (A) and (e 5.166)

K[P1 ⊕ P2] ≤ [pi], i = 1, 2, ...,m, (e 5.167)

and there exists a unital ǫ-F-multiplicative contractive completely positive linear map ψ : C(X) →
P2BP2 whose range contained in a finite dimensional C∗-subalgebra, unital ǫ-F-multiplicative
contractive completely positive linear maps H1,H2 : C(X) → P3BP3 ⊂ P3AP3, where P2, P3 ∈
B, B = ⊕N

j=1Bj , and Bj = C(Xj ,Mr(j)) (Xj = [0, 1], or Xj is a point) with

[H1]|P = [H2]|P = [h0]|P ,

for some unital homomorphism h0 : C(X) → C, where C = P3BP3, C = ⊕N
j=1Cj and Cj =

C(Xj ,Mr′(j)), and a unitary W ∈ A such that

‖L(f)− [(P1L(f)P1 ⊕H1(f)⊕ ψ(f)⊕
m∑

i=1

f(xi)pi]‖ < ǫ (e 5.168)

‖AdW ◦ Λ(f)− [P1(AdW ◦ Λ)(f)P1 ⊕H2(f)⊕ ψ(f)⊕
m∑

i=1

f(xi)pi]‖ < ǫ (e 5.169)

for all f ∈ F , (e 5.170)

µtj,x◦Hi
(Or) ≥ ∆(r/3)/2 and t(P2 +

m∑

i=1

pi) < ǫ0 (e 5.171)

for all r ≥ η0, x ∈ Xj, where tj,x is the composition of the point-evaluation at x and the
normalized trace on Mr′(j), j = 1, 2, ..., k, and for all t ∈ T (B), and

‖P1a− aP1‖ < ǫ00, (1− P1)a(1 − P1) ∈ǫ00 B for all a ∈ H ∪ L(F) ∪ Λ(F), (e 5.172)

where 1B = 1− P1, Moreover,

[P1LP1]|P = [P1(AdW ◦ Λ)P1]|P . (e 5.173)

Proof. Let ǫ, ǫ0, {x1, x2, ..., xm} ⊂ X, a finite subset F ⊂ X, a finite subset P ⊂ K(C(X)), ∆,
K ≥ 1 and η0 > 0 be as described. We may assume that (ǫ,F ,P) is a KL-triple for C(X) and
0 < ǫ0, ǫ < 1/16.

Let δ1 > 0 (in place of δ), G1 ⊂ C(X) be a finite subset (in place of G), P1 ⊂ K(C(X)) (in
place of P) be a finite subset and K1 be an integer (in place of L) for min{ǫ/16, ǫ0/16} and F
required by 4.3.
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We may also assume, without loss of generality, that P ⊂ P1 and (δ1,G1,P1) forms a KL-
triple. We may further assume that, if L′, L′′ : C(X) → C (for any unital C∗-algebra C) are
ǫ-G1-multiplicative contractive completely positive linear maps and

‖L′(f)− L′′(f)‖ < ǫ for all f ∈ G1,

then
[L′]|P1 = [L′′]|P1 .

Let G be the subgroup generated by P1 and let s1, s2, ..., sk0 be a set of generators of G ∩
kerρC(X).

Let ǫ2 = min{ǫ/64, ǫ0/64, δ1/2, δ′/2} and G2 = F ∪ G1 ∪ G′.
Let N1 = N(ǫ2,G2,P1) be as in 4.6 where δ is replace by ǫ2, G is replace by G2 and P is

replaced by P1.
Let N2 (in place m) and {y1, y2, ..., yN2} (in place of {x1, x2, ..., xm}) be as in 4.7 for ǫ2 (in

place ǫ) and G2 (in place of F). One may assume that N2 > m and yj = xj, j = 1, 2, ...,m.
Choose η′ > 0 satisfying the following:

|f(x)− f(x′)| < ǫ2/16

for all f ∈ G2, if dist(x, x
′) < 2η′. Moreover, we may assume that

O4η′(yj) ∩O4η′(yi) = ∅ if i 6= j.

Choose η′′ > 0 such that η′′ < η0/4 and

∆(η′′) <
∆(η0/4)

256N2
.

Choose
η = min{η1/4, η2/4, η′/4, η′′/4}.

Let δ2 > 0 (in place of δ) and let G3 ⊂ C(X) be a finite subset required by Lemma 9.6 of
[18] for ǫ2/2 (in place of ǫ), G2 (in place of F), η and 1/256 (in place of r).

Choose K̄ to be an integer which is greater than the integer K given by the lemma. We may
assume that K > 4. Choose d > 0 such that

16dK̄N1N
2
2 (K1 + 1) < ǫ0∆(η)/211. (e 5.174)

It follows from 4.5 that there are δ3 > 0 and a finite subset G4 ⊂ C(X) such that, for any
unital δ3-G4-multiplicative contractive completely positive linear map Ψ : C(X) → C (for any
unital C∗-algebra C with T (C) 6= ∅),

|τ([Ψ](si))| < d/8 for all τ ∈ T (C).

Let δ = min{ǫ2/4, δ2/4, δ3/4, δ4} and G = ∪5
i=1Gi.

Now suppose that L,Λ : C(X) → A, where A is a unital simple C∗-algebra with tracial rank
at most one, satisfy the assumptions of the theorem for the above δ, G, η and ∆.

By Theorem 9.6 of [18] and by the choice of η, there exists projections Q1, Q2 ∈ A and two sets
of mutually orthogonal projections {E1, E2, ..., EN2} in (1−Q1)A(1−Q1) and {E′

1, E
′
2, ..., E

′
N2

}
in (1−Q2)A(1 −Q2) such that

∑N2
i=1Ei = 1−Q1,

∑N2
i=1E

′
i = (1−Q2),

‖L(g) − [Q1L(g)Q1 ⊕
N2∑

i=1

g(yi)Ei)‖ < ǫ2/2, (e 5.175)

‖Λ(g) − [Q2Λ(g)Q2 ⊕
N2∑

i=1

g(yi)E
′
i‖ < ǫ2/2 (e 5.176)
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for all g ∈ G2,

∆(η) > τ(Ei) ≥ (1− 1/212)∆(η) and (e 5.177)

∆(η) > τ(E′
i) ≥ (1− 1/212)∆(η), i = 1, 2, ..., N2 (e 5.178)

for all τ ∈ T (A). Since A has tracial rank at most one (see Lemma 9.9 of [18]), there is, for each
i, a projection qi ≤ Ei such that [qi] ≤ [E′

i] and

τ(qi) ≥ (1− 1/211)∆(η) for all τ ∈ T (A).

Let q′i ≤ E′
i such that [qi] = [q′i], i = 1, 2, ..., N2 . Let Q0 = 1 −∑N2

i=1 qi and Q
′
0 = 1 −∑N2

i=1 q
′
i.

Then, we have that

‖L(g) − [Q1L(g)Q1 ⊕
N2∑

i=1

g(yi)(Ei − qi) +

N2∑

i=1

g(yi)qi]‖ < ǫ2/2 (e 5.179)

‖Λ(g) − [Q2Λ(g)Q2 ⊕
N2∑

i=1

g(yi)(E
′
i − q′i) +

N2∑

i=1

g(yi)q
′
i‖ < ǫ2/2 (e 5.180)

for all g ∈ G2. Since [qi] = [q′i], i = 1, 2, ..., N2 , there is a unitary W1 ∈ A such that

W ∗
1 q

′
iW1 = qi, i = 1, 2, ..., N2 and W ∗

1Q
′
0W1 = Q0.

Define L1 : C(X) → Q0AQ0 by L1(f) = Q1L(f)Q1⊕
∑N2

i=1 f(yi)(Ei−qi) for all f ∈ C(X). Define

Λ1 : C(X) → Q0AQ0 by Λ1(f) = W ∗
1 (Q2Λ(f)Q1 ⊕

∑N2
i=1 f(yi)(E

′
i − q′i))W1 for all f ∈ C(X).

Then L1 and Λ1 are ǫ2-G4-multiplicative and

‖L(g) − [L1(g) +

N2∑

i=1

g(yi)qi]‖ < ǫ2/2 and (e 5.181)

‖AdW1 ◦ Λ(g) − [Λ1(g) +

N2∑

i=1

g(yi)qi‖ < ǫ2/2 (e 5.182)

for all g ∈ G2. Note that

[L1](si) = [L](si) and [Λ1](si) = [Λ](si), i = 1, 2, ..., k0 . (e 5.183)

We compute that
µτ◦Q1LQ1(Or) ≥ ∆(r)−N2∆(η) ≥ 255∆(r)/256

for all τ ∈ T (A) and r ≥ η0/4. It follows that

µτ◦L1(Or) ≥ 255∆(r)/256 (e 5.184)

for all τ ∈ T (A) and r ≥ η0/4. Similarly,

µτ◦Λ1(Or) ≥ 255∆(r)/256 (e 5.185)

for all τ ∈ T (A) and r ≥ η0/4.

Let θ < ǫ0∆(η/2)
8N1N2K̄

. Let ǫ00 > 0 and let H ⊂ A be a finite subset. Define

H1 = H ∪ L(G) ∪ L1(G) ∪ Λ1(G) ∪AdW1 ◦ Λ(G) ∪ {P1, q1, q2, ..., qN2}.
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Let 0 < δ0 < min{ǫ2/2, δ/4, ǫ00} and put

L′(f) = L1(f)⊕
N2∑

i=1

f(yi)qi and (e 5.186)

Λ′(f) = Λ1(f)⊕
N2∑

i=1

f(yi)qi (e 5.187)

for all f ∈ C(X). Since A has tracial rank at most one, by 4.8, there exists a projection Q3 ∈ A
and B = ⊕N

j=1Bj with 1B = Q3, where Bj = Mr(j)(C(Xj)) and Xj = [0, 1], or Xj is a point,
such that

‖Q3a− aQ3‖ < δ0, Q3aQ3 ∈δ0 B for all a ∈ H1, (e 5.188)

‖L′(f)− [(1−Q3)L
′(f)(1−Q3)⊕ L3(f)]‖ < ǫ2/2N2, (e 5.189)

‖Λ′(f)− [(1−Q3)Λ(f)(1 −Q3)⊕ Λ3(f)]‖ < ǫ2/2N2 for all f ∈ G, (e 5.190)

τ(1−Q3) < θ for all τ ∈ T (A), (e 5.191)

|Tj,x([L3](si))| < (1 + 1/128)(d/8), |Tj,x([Λ3](si)| < (1 + 1/128)(d/8) (e 5.192)

µTj,x◦L3(Or) ≥ 3∆(r/3)/4, µTj,x◦Λ3(Or) ≥ 3∆(r/3)/4 (e 5.193)

for all r ≥ η0, and for all j and x ∈ Xj , where Tj,x is the normalized trace of Mr(j) at x ∈ Xj ,
and

r(j) >
215K̄N1N

2
2 (K1 + 1)

ǫ0∆(η/2)
, j = 1, 2, ..., N. (e 5.194)

Moreover,

[L3]|P1 = [Λ3]|P1 in KL(C(X), B). (e 5.195)

Therefore

‖Q3L
′(f)Q3 − L3(f)‖ < ǫ2/2N2 and ‖Q3Λ

′(f)Q3 − Λ3(f)‖ < ǫ2/2N2 (e 5.196)

for all f ∈ G. By 4.8, we further obtain mutually orthogonal projections e1, e2, ..., eN2 ∈ B such
that

‖L3(f)− [EL3(f)E ⊕
N2∑

i=1

f(yi)ei]‖ < ǫ2/2 (e 5.197)

‖Λ3(f)− [EΛ3(f)E ⊕
N2∑

i=1

f(yi)ei]‖ < ǫ2/2 (e 5.198)

for all f ∈ G, where E = 1B −∑N2
i=1 ei. Moreover we require that

∆(η)/2 > Tj,x(ei) ≥ (1− 1/250)∆(η), ∆(η)/2 > τ(ei) ≥ (1− 1/250)∆(η) (e 5.199)

for all x ∈ Xj , where Tj,x is the normalized trace evaluated at x, and for all τ ∈ T (A), j =
1, 2, ..., N2.

Define L4 = EL3E and Λ4 = EΛ3E. We compute, by (e 5.193) and (e 5.199)

µTj,x◦L4(Or) ≥ 3∆(r/3)/4 −N2∆(η) ≥ ∆(r/3)/2 and (e 5.200)

µTj,x◦Λ4(Or) ≥ ∆(r/3)/2. (e 5.201)
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for all r ≥ η0 and for all x ∈ Xj and j = 1, 2, ..., N.
We compute that

[L4](sj) = [Λ4](sj) = [L](sj) = [Λ](sj), j = 1, 2, ..., k0. (e 5.202)

Put C ′
j = E(Mr(j)(C(Xj))E = Mr′′(j)(C(Xj)), where r

′′(j) ≤ r(j), and Put L4,j = πj ◦ L4 and
Λ4,j = πj ◦ Λ4, where πj : EBE → EBjE is the projection, j = 1, 2, ..., N.

Put
dj = max{|Tj,x([L4](sk))| : k = 1, 2, ..., k0},

j = 1, 2, ..., N. Note that dj ≤ d/4, j = 1, 2, ..., N.
It follows from 4.6 that there exist unital ǫ2-G2-multiplicative L0,j, L̄0,j : C(X) →MJj (C(Xj))

whose ranges are contained in finite dimensional C∗-subalgebras, where

Jj = djN1r(j) ≤ dN1r(j) (e 5.203)

such that

[L4,j ⊕ L0,j]|P1 = [H0,j]|P1 and [L0,j ⊕ L̄0,j]|P1 = [h0,j ]|P1 (e 5.204)

for some unital homomorphismsH0,j : C(X) →Mr′′(j)+Jj(C(Xj)) and h0,j : C(X) →M2Jj (C(Xj))
with finite dimensional range.

By applying 4.3, we obtain a unital homomorphism h1,j : C(X) → M2JjK1(C(Xj)) with
finite dimensional range and a unital homomorphism H1,j : C(X) → M2Jj(K1+1)(C(Xj)) with
finite dimensional range such that

‖(L0,j ⊕ L̄0,j ⊕ h1,j)(f)−H1,j(f)‖ < min{ǫ/16, ǫ0/16} for all g ∈ F . (e 5.205)

It follows from 4.7 that there are mutually orthogonal rank 2Jj(K1 + 1) projections q′i,j ∈
MN22J1(K1+1)(C(Xj)) and a unital homomorphism h2,j : C(X) → M(N2−1)(2J1(K1+1)(Cj) with
finite dimensional range such that

‖H1,j(f)⊕ h2,j(f)−
N2∑

i=1

f(yi)q
′
i,j‖ < ǫ2 for all f ∈ F , (e 5.206)

j = 1, 2, ..., N.
There is, for each i and j, by (e 5.199) and (e 5.174), a projection p′i,j ≤ ei such that

ǫ0/128N2 ≥ Tj,x(p
′
i,j) ≥ ǫ0/256N2 ≥ 16dK̄N1N2(K1 + 1) (e 5.207)

for x ∈ Xj , j = 1, 2, ..., N and i = 1, 2, ..., N2.

Put L0 =
∑N

j=1 L0,j, L̄0 =
∑N

j=1 L̄0,j, hi =
∑N

j=1 hi,j , i = 1, 2. There is a projection qi,j ≤ p′i,j
in Bj such that [qi,j] = [q′i,j] in K0(Bj), j = 1, 2, ..., N. Put p′′i =

∑N
j=1 qi,j, i = 1, 2, ...N2. Then

Tj,x(p
′′
i ) < 2Jj(K1 + 1)/r(j) for all x ∈ Xj . (e 5.208)

Thus we obtain a unitary W0 ∈ B such that

‖AdW0 ◦ (L0 ⊕ L̄0 ⊕ h1 ⊕ h2)(f)−
N2∑

i=1

f(yi)p
′′
i ‖ < ǫ2 + ǫ/16 (e 5.209)

for all f ∈ F .
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Now define

H1(f) = L4(f)⊕AdW0 ◦ L0 ⊕ h1(f)⊕ h2(f)⊕
m∑

k=1

f(yk)(ei − p′i)⊕
N2∑

j=m+1

f(yj)(ei − p′′i )

for all f ∈ C(X), ψ = AdW0 ◦ L̄0. Let P1 = (1 −Q3), P2 = W ∗
0 L̄0(1C(X))W0, P3 = H1(1C(X)).

pj = p′j − p′′j , j = 1, 2, ..., N2 . Then we estimate that, by (e 5.197) and (e 5.209),

‖L3(f)− (H1 ⊕ ψ(f)⊕
m∑

j=1

f(xj)pj)‖ (e 5.210)

< ‖L3(f)− (L4(f)⊕
N2∑

i=1

f(yj)ej)‖+ (e 5.211)

‖L4(f)⊕
N2∑

j=1

f(yj)ej − L4(f)⊕AdW0(L0 ⊕ L̄0 ⊕ h1 ⊕ h2)(f)⊕
m∑

j=1

f(yj)pj)‖ (e 5.212)

< ǫ2/2 + ǫ2 + ǫ/16 = 3ǫ2/2 + ǫ/16 (e 5.213)

for all f ∈ F . It follows from (e 5.181), (e 5.186), (e 5.189) and (e 5.213) that

‖L(f)− [P1L(f)P1 ⊕ ψ(f)⊕
m∑

j=1

f(xj)pj ⊕H1(f)‖ (e 5.214)

< ‖L(f)− L′(f)‖+ ‖L′(f)− (1−Q3)L
′(f)(1−Q3)⊕ L3(f)‖ (e 5.215)

+‖(1−Q3)L
′(f)(1−Q3)⊕ L3(f)− P1L(f)P1 ⊕ L3(f)‖ (e 5.216)

+‖P1L(f)P1 ⊕ L3(f)− [P1L(f)P1 ⊕H1(f)⊕ ψ(f)⊕
m∑

j=1

f(xj)pj ]‖ (e 5.217)

< ǫ2/2 + ǫ2/2 + 3ǫ2/2 + ǫ/16 < ǫ (e 5.218)

for all f ∈ F . Define

H2(f) = Λ4 ⊕AdW0 ◦ L0 ⊕ h1(f)⊕ h2(f)⊕
N2∑

k=1

f(yk)(ei − p′i)⊕
N2∑

j=m+1

f(yj)(ej − p′′j ).

Similarly, we also have

‖AdW1 ◦ Λ(f)− [P1(AdW1 ◦ Λ(f))P1 ⊕ ψ(f)⊕
m∑

j=1

f(xj)pj ⊕H2(f)]‖ < ǫ (e 5.219)

for all f ∈ F .
Note also that, (by (e 5.174) and (e 5.208))

ǫ0∆(η)

128N2
≥ Tj,x(pi) = Tj,x(p

′
j − p′′j ) ≥

ǫ0∆(η)

256N2
− 2Jj(K1 + 1)/r(j) (e 5.220)

≥ 14K̄dN1N2(K1 + 1) (e 5.221)

for all τ ∈ T (A) and i = 1, 2, ..., N2. Therefore, by (e 5.191),

τ(pi) ≥ (1− θ)14dK̄N1N2(K1 + 1) for all τ ∈ T (A). (e 5.222)
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Note that, by (e 5.203),

Tj,x(P2) ≤ djN1 and τ(P1) = τ(1−Q3) < θ (e 5.223)

for all x ∈ Xj , j = 1, 2, ..., N and for all τ ∈ T (A). It follows that

τ(pi) > Kτ(P2) +Kτ(P1) for all τ ∈ T (A), i = 1, 2, ...,m. (e 5.224)

This gives (e 5.167). To obtain (e 5.166), we note, by (e 5.207) and (e 5.174) that

τ(P1) + τ(P2) +

m∑

i=1

τ(pi) < θ + dN1 +
ǫ0

128N2
m (e 5.225)

<
ǫ0∆(η/2)

4N1N2K̃
+
ǫ0∆(η/2)

256K̃
+

ǫ0
128

< ǫ0/2 (e 5.226)

for all τ ∈ T (A). We also have that

Tj,x(P2) +
m∑

i=1

Tj,x(pi) < ǫ0/2 for all x ∈ Xj . (e 5.227)

Thus

t(P2 +

m∑

i=1

pi) < ǫ0/2

for all t ∈ T (B). This implies (e 5.166). We write C = P3BP3 = ⊕N
j=1Cj, where Cj =

Mr′(j)(C(Xj)), j = 1, 2, ..., N. Finally, from (e 5.200) and (e 5.201),

µtj,x◦Hi
(Or) ≥ ∆(r/3)/2 (e 5.228)

for all r ≥ η0 and x ∈ Xj , where tj,x is the normalized trace of Mr′(j) evaluated at x ∈ Xj ,
j = 1, 2, ..., N and i = 1, 2. The lemma follows.

Lemma 5.2. Let C be a separable unital C∗-algebra with T (C) 6= ∅, let U ⊂ Uc(K1(C)) be a
finite subset, F ⊂ C be a finite subset and let λ > 0. There exists δ > 0 and a finite subset
G ⊂ C satisfying the following: Suppose that L1, L2 : C → A (for some unital C∗-algebra A) are
two δ-G-multiplicative contractive completely positive linear maps such that

dist(〈L1(u)〉, 〈L2(u)〉) ≤ Γ (e 5.229)

for all u ∈ U and for some Γ > 0. There exists a finite subset H ⊂ A and σ > 0 such that, if
p ∈ A is a projection such that

‖pa− ap‖ < σ, pap ∈σ B for all a ∈ H,
where 1B = p and B ⊂ pAp is a unital C∗-subalgebra, and Λ1,Λ2 : C → B are two 2δ-G-
multiplicative contractive completely positive linear maps such that

‖pLi(g)p − Λi(g)‖ < σ for all g ∈ G,
then

dist(〈Λ1(u)〉, 〈Λ2(u)〉) ≤ Γ + λ

for all u ∈ U .
Moreover,

|τ ◦ Λ1(f)− τ ◦ Λ2(f)| ≤ λ+max{|t ◦ L1(f)− τ ◦ L2(f)| : f ∈ F , t ∈ T (A)} (e 5.230)

for all f ∈ F and τ ∈ T (B).
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Proof. Let U and F be fixed. Then there is an integer k ≥ 1 such that every element in U is
represented by a unitary in Mk(C). To simplify notation, replacing A by Mk(A), replacing B by
Mk(B), and later replacing Li by Li ⊗ idMk

, i = 1, 2, without loss of generality, we may assume
that U is actually in U(A). We choose δ and G such that for any 2δ-G-multiplicative contractive
completely positive linear maps L from C, 〈L(u)〉 is well defined for all u ∈ U .

Now let L1 and L2 be as described (for the above choice of δ and G). Suppose that U =
{u1, u2, ..., um}. Then there are w1, w2, ..., wm ∈ CU(A) such that

‖〈L1(ui)〉〈L2(u
∗
i )〉 − wi‖ ≤ Γ + λ/2.

It is clear that, if H is sufficiently large (containing at least L1(u) and L2(u) for all u ∈ U and
many other elements in U(A)) and σ is sufficiently small, 〈pLip(uj)〉 are well defined and

‖〈pLip(uj)〉 − 〈Λi(uj)〉‖ < λ/16

(j = 1, 2, ...,m and i = 1, 2) and there are unitaries v1, v2, ..., vm ∈ CU(B) such that

‖pwip− vi‖ < λ/16, i = 1, 2, ...,m.

It follows that

dist(〈Λ1(u)〉, 〈Λ2(u)〉) ≤ Γ + λ (e 5.231)

for all u ∈ U .
Similarly, for each f ∈ F , there are x1(f), x2(f), ..., xf(m)(f) ∈ A such that

‖L1(f)−
f(m)
∑

i=1

xi(f)
∗xi(f)‖ < λ/8 and (e 5.232)

‖L2(f)−
f(m)
∑

i=1

xi(f)xi(f)
∗‖ < M + λ/8 (e 5.233)

where M = max{|τ ◦ L1(f) − τ ◦ L2(f)| : f ∈ F , τ ∈ T (A)} (see [1]). We compute that, with
sufficiently large H and small σ, there are y1(f), y2(f), ..., yf(m)(f) ∈ B such that

‖Λ1(f)−
f(m)
∑

i=1

yi(f)
∗yi(f)‖ < λ/4 and (e 5.234)

‖Λ1(f)−
f(m)
∑

i=1

yi(f)
∗yi(f)‖ < M + λ/4 (e 5.235)

for all f ∈ F . This implies that

|τ ◦ Λ1(f)− τ ◦ Λ2(f)| < M + λ

for all f ∈ F and for all τ ∈ T (B).

Theorem 5.3. Let X be a compact metric space and let ∆ : (0, 1) → (0, 1) be a non-decreasing
function with limt→0 ∆(t) = 0. Let ǫ > 0 and F ⊂ C(X) be a finite subset. Then there exists η >
0, δ > 0, a finite subset G ⊂ C(X), a finite subset H ⊂ C(X)s.a., a finite subset P ⊂ K(C(X)),
a finite subset U ⊂ Uc(K1(C(X))), γ1 > 0 and γ2 > 0 satisfying the following: Suppose that
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L1, L2 : C(X) → A are two unital δ-G-multiplicative contractive completely positive linear maps
for some unital simple C∗-algebra A of tracial rank at most one such that

[L1]|P = [L2]|P , (e 5.236)

|τ ◦ L1(h)− τ ◦ L2(h)| < γ1 for all h ∈ H, (e 5.237)

dist(〈L1(u)〉, 〈L2(u)〉) < γ2 for all u ∈ U (e 5.238)

µτ◦Li
(Or) > ∆(r) (e 5.239)

for all τ ∈ T (A) and for all r ≥ η. Then there exists a unitary W ∈ A such that

‖AdW ◦ L1(f)− L2(f)‖ < ǫ for all f ∈ F . (e 5.240)

Proof. Fix ǫ > 0 and a finite subset F ⊂ C(X). Let η1 > 0 be as in 3.6 for ǫ/2 (in place of
ǫ) and F . Let σ1 = ∆(η1/3)/3. Let η2 > 0 be as in 3.6 for ǫ/2 (in place of ǫ), F , η1 and σ1.
Let σ2 = ∆(η2/3)/3. Let η3 > 0 be as in 3.6 for ǫ/2 (in place of ǫ), F , η1, σ1, η2 and σ2. Let
σ3 = ∆(η3/3)/3. Let η4 > 0 be as in 3.6 for ǫ/2 (in place of ǫ), F , η1, σ1, η2, σ2, η3 and σ3. Let
σ4 = ∆(η4/3)/3.

Let γ′1 > 0 ( in place of γ1), γ
′
2 > 0 (in place of γ2), δ1 (in place of δ), G1 ⊂ C(X) (in place

of G) be a finite subset, P1 ⊂ K(C(X)) (in place of P) be a finite subset H ⊂ C(X)s.a. be a
finite subset and U1 ⊂ Uc(K1(C(X))) (in place of U) be a finite subset as required by 3.6 for
ǫ/2, F , ηi and σi (i = 1, 2, 3, 4). Let N ≥ 1 be an integer such that every unitary in U1 is in
MN (U(C(X))).

Let ∆1 = ∆/2. Let δ2 > 0 (in place of δ) and G2 ⊂ C(X) (in place of G) required by 3.4 for
∆1 (in place of ∆), U1 (in place of U), η4/2 (in place η), 15/16 (in place of λ1) and 1/32 (in
place of λ2).

Let δ3 > 0 (in place of δ), G3 ⊂ C(X) (in place of G) be a finite subset, P2 ⊂ K(C(X))
(in place of P) be a finite subset {x1, x2, ..., xm} ⊂ X, U2 ⊂ Uc(K1(C(X)) (in place of U) and
K ≥ 1 (in place of L) be an integer required by 4.4 for ǫ/2 (in place of ǫ), F and γ′2 (in place of
λ).

Let δ4 > 0 (in place of δ), G4 ⊂ C(X) (in place of G) be a finite subset required by Lemma
5.2 for γ′2/8 (in place of λ), U1 ∪ U2 (in place of U) and H (in place of F).

Let δ5 = min{ǫ/4, δi : 1 ≤ i ≤ 4} G5 = F ∪ ∪4
i=1Gi, U = U1 ∪ U2, γ1 = γ′1/8 and γ2 = γ2/8.

Put ǫ0 = min{γ′1/8N, γ′2/8N} and η0 = min{ηi/4 : 1 ≤ i ≤ 4}.
Let η > 0, δ6 > 0 (in place of δ), G6 ⊂ C(X) (in place of G) be a finite subset required by

5.1 for δ5 (in place of ǫ), ǫ0, {x1, x2, ..., xm}, G5 (in place of F), ∆, K and η0.
Define δ = min{δ6, δ5}, G = G6 ∪ G5 and P = P1 ∪ P2.
Now suppose that L1, L2 : C(X) → A are two unital δ-G-multiplicative contractive com-

pletely positive linear maps, where A is a unital simple C∗-algebra of tracial rank at most one,
which satisfy the assumption for the above defined ∆, η, H, U , γ1 and γ2.

Let H1 ⊂ A (in place of H) be a finite subset and σ > 0 for L1, L2, U , λ′2/8 (in place of Γ)
and min{λ′1/8, λ′2/8} (in place of λ) (for C = C(X)) be required by 5.2. Let ǫ00 = σ.

Let δ7 = min{σ/2, δ}.
By applying 5.1, for H1 (in place of H), there exist mutually orthogonal projections

P1, P2, P3, p1, p2, ..., pm ∈ A

with P2, P3, p1, p2, ..., pm ∈ B, P1 + P2 + P3 +
∑m

i=1 pi = 1A,

τ(P3) > 1− ǫ0 and K([P1] + [P2]) ≤ [pi], i = 1, 2, ...,m, (e 5.241)
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a unital δ5-G5-multiplicative contractive completely positive linear map ψ : C(X) → P2AP2

whose range is contained in a finite dimensional C∗-subalgebra, unital δ5-G5-multiplicative con-
tractive completely positive linear maps H1,H2 : C(X) → P3BP3 ⊂ P3AP3, where 1B = P3,
B = ⊕N

j=1Bj , Bj = C(Xj ,Mr(j)) (Xj = [0, 1], or Xj is a point) with

[H1]|P = [H2]|P = [h0]|P (e 5.242)

for some unital homomorphism h0 : C(X) → B and a unitary W0 ∈ A such that

‖[L1(g) − [P1L1(g)P1 ⊕ ψ(g) ⊕
m∑

i=1

g(xi)pi ⊕H1(g)]‖ < δ7 and (e 5.243)

‖[AdW0 ◦ L2(g)− [P1(AdW0 ◦ L2(g))P1 ⊕ ψ(g) ⊕
m∑

i=1

g(xi)pi ⊕H2(g)]‖ < δ7 (e 5.244)

for all g ∈ G5,

µt◦Hi
(Or) ≥ ∆(r/3)/2 (e 5.245)

for all r ≥ η0 and for all t ∈ T (C), where C = P3BP3,

T (P2 ⊕
m∑

i=1

pi) < ǫ0 (e 5.246)

for all T ∈ T (B), and,

‖P1a− aP1‖ < ǫ00 and (e 5.247)

(1− P1)a(1 − P1) ∈ǫ00 B for all a ∈ H1 ∪ L1(G5 ∪ L2(G5). (e 5.248)

Moreover

[P1L1P1]|P = [P1AdW0 ◦ L2P1]|P . (e 5.249)

Put Ψ1 = P1L1P1 ⊕ ψ and Ψ2 = P1AdW0 ◦ L2P1 ⊕ ψ. By the choice of H1,

dist(〈P1L1P1(u)〉, 〈P1AdW0 ◦ L2P1(u)〉) < γ′2/4 + γ′2/2 = λ2

for all u ∈ U . Let D be a finite dimensional C∗-subalgebra of P2AP2 such that ψ(C(X)) ⊂ D.
Then 〈ψ(u)〉 ∈ CU(P3AP3) for all u ∈ U . It follows that

dist(〈Ψ1(u)〉, 〈Ψ2(u)〉) < λ2 (e 5.250)

for all u ∈ U . By the choices of K and {x1, x2, ..., xm}, there exists a unitary

W1 ∈ (P1 + P2 +

m∑

i=1

pi)A(P1 + P2 +

m∑

i=1

pi)

such that

‖W ∗
1 (Ψ2(f)⊕

m∑

i=1

f(xi)pi)W1 −Ψ1(f)⊕
m∑

i=1

f(xi)pi‖ < ǫ/2 for all f ∈ F . (e 5.251)

Define Φ1 : C(X) → B by

Φ1(f) = ψ(f)⊕
m∑

i=1

f(xi)pi ⊕H1(f)
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for all f ∈ C(X) and define Φ2 : C(X) → B by

Φ2(f) = ψ(f)⊕
m∑

i=1

f(xi)pi ⊕H2(f)

for all f ∈ C(X).
By the choice of δ4, G4 and H1, and applying 5.2, we obtain that

dist(〈Φ1(u)〉, 〈Φ2(u)〉) < λ′2/8 (e 5.252)

for all u ∈ U and

|T ◦Φ1(g)− T ◦ Φ2(g)| < λ′1/4 (e 5.253)

for all g ∈ H and for all T ∈ T (B).
Combining with (e 5.246), we obtain that

|t ◦H1(f)− t ◦H2(f)| ≤ λ′1/4 + 2ǫ0 < λ′1 (e 5.254)

for all f ∈ H and for all t ∈ T (C). Using the de la Harp-Skandalis determinant, combining
(e 5.252) and (e 5.246), we compute that

dist(〈H1(u)〉, 〈H2(u)〉) < λ′2/4 + 2Nǫ0 < λ′2. (e 5.255)

for all u ∈ U . Then, by (e 5.249) and by applying 3.6, there exists a unitary W2 ∈ C such that

‖AdW2 ◦H2(f)−H1(f)‖ < ǫ/2 (e 5.256)

for all f ∈ F . Define W = W0(W1 ⊕W2). Then, by (e 5.244), (e 5.251) and (e 5.256), we finally
obtain that

‖AdW ◦ L2(f)− L1(f)‖ < ǫ

for all f ∈ F .

Definition 5.4. Let X be a compact metric space and P ∈ Mr(C(X)) be a projection, where
r ≥ 1 is an integer. Put C = PMr(C(X))P. Suppose τ ∈ T (C). It is known that there exists a
probability measure µτ on X such that

τ(f) =

∫

X
tx(f(x))dµτ (x) for all f ∈ C

where tx is the normalized trace on P (x)MrP (x) for all x ∈ X (see 2.17 of [13]).
Suppose that Y is a finite CW complex, r ≥ 1 is an integer and P ∈Mr(C(Y )) is a projection.

Let X ⊂ Y be a compact subset. Let π :Mr(C(Y )) →Mr(C(X)) be the quotient map defined
by π(f) = f |X for all f ∈Mr(C(Y )).

Corollary 5.5. Suppose that Y is a finite CW complex, r ≥ 1 is an integer and P ∈Mr(C(Y ))
is a non-zero projection. Define C = π(PMr(C(Y ))P ) as defined above. Then Theorem 5.3
holds when C(X) is replaced by C and using the measure defined in 5.4.
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Proof. Clearly the corollary holds if C =Mr(C(X)).
To prove the general case, we may assume that Y is connected. Then there is an integer d ≥ 1

and a projection Q ∈Md(PMr(C(Y ))P ) such thatQMr(PMr(C(Y ))P )Q ∼=Mk(C(Y )) for some
integer k ≥ 1. Put C1 = QMr(PMr(C(Y ))P )Q. Then there exists a projection Q1 ∈ Mk1(C1)
and a unitary W ∈ Mdk1(PMr(C(Y ))P ) such that W ∗Q1W = P. Keep the notation π as
in 5.4. Note that, any unital contractive completely positive linear map Li : C → A, we
obtain a unital contractive completely positive linear map Li ⊗ idMd

: Mr(C) → Mr(A). Put
ψi,1 = (L1 ⊗ idMr)|π(C1) and ψi,2 = (ψ2 ⊗ idMk1

)|π(Q1)Mk1
(C1)π(Q1). We see that the corollary

follows by first considering ψi,1 (i = 1, 2) and then ψi,2 (i = 1, 2).

Definition 5.6. Let A be a unital C∗-algebra and let C be another C∗-algebra. Let L :
C → A be a positive linear map. Let Θ : C+ \ {0} → N × R+ be a map. We write Θ(c) =
(N(Θ(c)), R(Θ(c))) for c ∈ C+ \ {0}, where N(Θ(c)) ∈ N and R(Θ(c)) ∈ R+. Suppose that
S ⊂ C+ is a subset. We say the map L is S-Θ-full, if, for each s ∈ S, there are x1, x2, ..., xN(Θ(s))

such that ‖xj‖ ≤ R(Θ(s)), j = 1, 2, ..., N(Θ(s)) and

1A =

N(Θ(s))
∑

j=1

x∗jL(s)xj. (e 5.257)

The following is known and easy to prove. Only part (1) is actually used in this paper.
Both hold for more general unital simple C∗-algebras. For example, the class of unital separable
simple C∗-algebras which satisfy the strict comparison property for positive elements.

Lemma 5.7. Let X be a compact subset of a finite CW complex Y, let P ∈ Mr(C(Y )) be
a projection, where r ≥ 1 is an integer, and let π : Mr(C(Y )) → Mr(C(X)) be defined by
π(f) = f |X , Put C = π(PMr(C(Y ))P ).

(1) Suppose that Θ : C+ \{0} → N×R+ \{0} is a map. Then there exists an non-decreasing
map ∆ : (0, 1) → (0, 1) satisfying the following: For any η > 0, there exists a finite subset
S ⊂ C+ \ {0} such that, if A is a unital separable simple C∗-algebra with TR(A) ≤ 1 and if
L : C → A is a unital S-Θ-full positive linear map, then

µτ◦L(Or) ≥ ∆(r) for all τ ∈ T (A)

for all open balls Or with radius r ≥ η.
(2) Suppose that ∆ : (0, 1) → (0, 1) is a nondecreasing map. Then there exists a map

Θ : C+ \ {0} → N × R+ \ {0} satisfying the following: For any finite subset S ⊂ C+ \ {0},
there exists η > 0 such that, if A is a unital separable simple C∗-algebra with TR(A) ≤ 1 and
L : C → A is a unital positive linear map for which

µτ◦L(Or) ≥ ∆(r) for all τ ∈ T (A)

for all open balls Or with radius r ≥ η, then L is S-Θ-full.

Theorem 5.8. Let C be a unital AH-algebra and let Θ : C+ \ {0} → N × R+ be a map. Let
ǫ > 0, F ⊂ C be a finite subset. There exists a finite subset S ⊂ A+ \{0}, δ > 0, σ1 > 0, σ2 > 0,
a finite subset G ⊂ C, a finite subset P ⊂ K(C), a finite subset H ⊂ As.a. and a finite subset
U ⊂ Uc(K1(C)) satisfying the following: Suppose that A is a unital separable simple C∗-algebra
with TR(A) ≤ 1 and suppose that ϕ,ψ : C → A are two unital δ-G-multiplicative contractive
completely positive linear maps such that ϕ and ψ are S-Θ-full,

[ϕ]|P = [ψ]|P , (e 5.258)

|τ ◦ ϕ(g) − τ ◦ ψ(g)| < σ1 for all g ∈ H, (e 5.259)

dist(〈ϕ(u)〉, 〈ψ(u)〉) < σ2 for all u ∈ U . (e 5.260)
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Then there exists a unitary w ∈ A such that

‖Adw ◦ ϕ(f)− ψ(f)‖ < ǫ for all f ∈ F . (e 5.261)

Proof. Let C = limn→∞(Cn, ϕn), where Cn = PnMr(n)(C(Yn))Pn, Xn is a finite CW complex,
r(n) ≥ 1 is an integer, Pn ∈ Mr(n)(C(Yn)) is a projection and ϕn : Cn → Cn+1 is a unital
homomorphism. Let ϕn,∞ : Cn → C be the unital homomorphism induced by the inductive
limit system. Then, for each n, ϕn,∞(Cn) ∼= πn(Pn)Mr(n)(C(Xn))πn(Pn), where Xn ⊂ Yn is
a compact subset and πn : Mr(n)(C(Yn)) → Mr(n)(C(Xn)) is defined by πn(f) = f |Xn . Let
Bn = πn(Pn)Mr(n)(C(Xn))πn(Pn), n = 1, 2, .... Note that Bn ⊂ Bn+1, n = 1, 2, .... We may

write C = ∪∞
n=1Bn. Let ǫ > 0 and F ⊂ C be a finite subset. Without loss of generality, we may

assume that F ⊂ Bn for some integer n ≥ 1. From this it is clear that we can reduce the general
case to the case that C = Bn. Then the result follows from 5.5 and 5.7.

Corollary 5.9. Let C be a unital AH-algebra and let Θ : C+ \ {0} : N×R+ be a map. For any
ǫ > 0 and any finite subset F ⊂ C, there exists σ1 > 0, σ2 > 0, a finite subset S ⊂ A+ \ {0}, a
finite subset P ⊂ K(C), a finite subset H ⊂ As.a. and a finite subset U ⊂ Uc(K1(C)) satisfying
the following:

Suppose that A is a unital separable simple C∗-algebra with TR(A) ≤ 1 and suppose that
ϕ, ψ : C → A are two unital monomorphisms which are S-Θ-full such that

[ϕ]|P = [ψ]|P (e 5.262)

|τ ◦ ϕ(g) − τ ◦ ψ(g)| < σ1 for all g ∈ H and for all τ ∈ T (A), (e 5.263)

dist(ϕ‡(ū), ψ‡(u)) < σ2 for all u ∈ U . (e 5.264)

Then there exists a unitary w ∈ A such that

‖Adw ◦ ϕ(f)− ψ(f)‖ < ǫ for all f ∈ F . (e 5.265)

Theorem 5.10. Let C be a unital AH-algebra and let A be a unital separable simple C∗-algebra
with TR(A) ≤ 1. Suppose that ϕ,ψ : C → A are two unital monomorphisms. Then ϕ and ψ are
approximately unitarily equivalent if and only if

[ϕ] = [ψ] in KL(C,A) (e 5.266)

ϕ♯ = ψ♯ and (e 5.267)

ϕ† = ψ†. (e 5.268)

Note that [ϕ] = [ψ], ϕ† = ψ† and ϕ♯ = ψ♯ imply that ϕ‡ = ψ‡. Thus Theorem 5.10 follows
from 5.9 immediately.

6 The range

Definition 6.1. Let X be a compact metric space and let C = PMn(C(X))P, where P ∈
Mn(C(X)) is a projection and P (x) > 0 for all x ∈ X, and let A be a unital separable simple
C∗-algebra with T (A) 6= ∅. Let γ : T (A) → Tf(C) be a continuous affine map. For any τ ∈ T (A)
and any non-empty open set O ⊂ X, define

µγ(τ)(O) = sup{γ(τ)(f) : 0 ≤ f < 1 and suppf ⊂ O}.

Since γ(T (A)) is compact, we conclude that

inf
τ∈T (A)

µγ(τ)(O) > 0
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for every non-empty open subset O ⊂ X.
Fix a ∈ (0, 1). There are finitely many points x1, x2, .., xm ∈ X such that ∪mn=1O(xi, a/2) ⊃

X. Let Oa be an open ball of X with center at a point x and with radius a. Then Oa ⊃ O(xi, a/2)
for some i. Define

∆1(a) = min
{1≤i≤m}

inf
τ∈T (A)

µγ(τ)(O(xi, a/2)) (e 6.269)

for all a ∈ (0, 1). It follows that

µτ (Oa) ≥ ∆1(a) for all a > 0. (e 6.270)

Note that, if X is infinite, lima→0 ∆1(a) = 0.

Lemma 6.2. Let C be as in 6.1 and A be a unital separable simple C∗-algebra with T (A) 6=
emptyset. Suppose that γ : T (A) → Tf(C) is a continuous affine map. For any η > 0, 0 <
λ1, λ2 < 1, there exists a finite subset H ⊂ Cs.a. and ǫ > 0 satisfying the following: for any
unital positive linear map L : C → A such that

|τ ◦ L(g) − γ(τ)(g)| < ǫ for all g ∈ H, (e 6.271)

then

µτ◦L(Or) ≥ λ1∆1(a/2)/2(1 + λ2) for all a ≥ η. (e 6.272)

The proof of this is almost identical to that of 3.4. We omit it.

Lemma 6.3. Let X be a finite CW complex and let A be an infinite dimensional unital simple
C∗-algebra with TR(A) ≤ 1. Let C = PMr(C(X))P (r ≥ 1), where P ∈ Mr(C(X)) is a
projection. Suppose that e ∈ A is a non-zero projection. Then, there exists a non-zero projection
e0 ≤ e and a unital monomorphism h : C → e0Ae0.

Proof. Without loss of generality, we may assume that X is connected. There are mutually
orthogonal and mutually equivalent non-zero projections e1, e2, ..., er ≤ eAe. Put e′ =

∑r
i=1 ei.

It is well known that there exists a unital monomorphism h0 : C(X) → e1Ae1 (see 9.5 of [15]).
This extends a monomorphism h1 : Mr(C(X)) → e′Ae′ ∼= Mr(e1Ae1). Let e0 = h1(P ). Define
h : C → e0Ae0 by h = h1|C .

Definition 6.4. Let C and A be two unital C∗-algebras. Denote by KKe(C,A)
++ the set of

those elements κ ∈ KK(C,A) such that

κ([1C ]) = [1A] and κ(K0(C)+ \ {0}) ⊂ K0(A)+ \ {0}.

Denote by KLe(C,A)
++ the set of those elements κ ∈ KL(C,A) such that κ([1C ]) = [1A] and

κ(K0(C) \ {0}) ⊂ K0(A)+ \ {0}.
Now suppose that Tf(C) 6= ∅ and A is a unital simple C∗-algebra with T (A) 6= ∅. Let

γ : T (A) → Tf(C) be a continuous affine map. We say κ and γ are compatible, if, τ ◦ κ([p]) =
γ(τ)([p]) for every projection p ∈M∞(C). Let α : U(M∞(C))/CU(M∞(C)) → U(A)/CU(A) be
a continuous homomorphism. By (e 2.5), there is a homomorphism α0 : Aff(C)/ρC(K0(C)) →
Aff(A)/ρA(K0(A)) induced by α and there is homomorphism α1 : K1(C) → K1(A) induced by
α. We say α and κ compatible if κ|K1(C) = α1, we say κ, γ and α are compatible if κ and γ are
compatible, κ and α compatible and the homomorphism induced by γ is equal to α0.
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Lemma 6.5. Let X be a finite CW complex, let n ≥ 1 be an integer, let C = PMn(C(X))P,
where P ∈Mn(C(X)) is a projection, and let A be a unital infinite dimensional separable simple
C∗-algebra of tracial rank at most one. Suppose that κ ∈ KKe(C,A)

++ and γ : T (A) → Tf(C)
is a continuous affine map which are compatible. Let σ > 0 and H ⊂ Cs.a. be a finite subset.
Then there is a unital homomorphism h : C → A such that

[h] = κ and (e 6.273)

|τ ◦ h(c) − γ(τ)(c)| < σ (e 6.274)

for all c ∈ H and all τ ∈ T (A).

Proof. To simplify the proof, without loss of generality, we may assume that X is connected.
There is a unital separable amenable simple C∗-algebra B with TR(B) = 0 which satisfies the
UCT such that

(K0(B),K0(B)+, [1B ],K1(B)) = (K0(A),K0(A)+, [1A],K1(A)).

Let [ı] ∈ KKe(B,A)
++ be an invertible element which gives the above identity. Therefore there

is κ0 ∈ KKe(C,B)++ such that
κ = κ0 × [ı].

Without loss of generality, we may assume that H is in the unit ball of C.
Let p ∈ B with τ(p) < σ/8 for all τ ∈ T (B). It follows from 6.2 of [20] that there is a nonzero

projection p0 ≤ p, a finite dimensional C∗-subalgebra B0 ⊂ (1−p0)B(1−p0) with 1B0 = 1−p0,
a unital homomorphism h1 : C → p0Bp0 and a unital homomorphism h2 : C → B0 such that

[h1 + h2] = κ0.

Put D = (1 − p0)A(1 − p0). Then D is a unital simple C∗-algebra with TR(D) ≤ 1. For

each t ∈ T (D), there is a unique t̄ ∈ T (A) such that t(d) = t̄(d)
t̄(1−p0)

for all d ∈ D. Define

γ1 : T (D) → Tf(C) by
γ1(t) = γ(t̄).

for all t ∈ T (D). It follows from Lemma 9.5 of [15] that there exists a unital homomorphism
h3 : C → D such that

[h3] = [h2] in KK(C,A). (e 6.275)

|t(h3(c))− γ1(t)(c)| < σ/8 (e 6.276)

for all c ∈ H and for t ∈ T (D). It follows from Theorem 5.4 of [20] that there is a unital
monomorphism j : (1 − p0)B(1 − p0) → (1 − e0)A(1 − e0), where [e0] = [ı]([p0]) such that
[j] = [ı].

Now define h : C → A by h(c) = j ◦ h1(c)⊕ h3(c) for all c ∈ C. One computes that

[h] = [κ] and |τ(h(c)) − γ(τ)(c)| < σ

for all c ∈ H and for all τ ∈ T (A).
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Lemma 6.6. Let C be as in 6.5 and let A be a unital infinite dimensional separable simple
C∗-algebra with TR(A) ≤ 1. Suppose that κ ∈ KKe(C,A)

++, γ : T (A) → Tf(C) is a contin-
uous affine map and α : U(M∞(C))/CU(M∞(C)) → U(A)/CU(A) such that κ, γ and α are
compatible. Then, for any σ1 > 0, 1 > σ2 > 0, any finite subset H ⊂ Cs.a. and any finite subset
U ⊂ U(MN (C)) (for some integer N ≥ 1), there exists a unital homomorphism h : C → A such
that

[h] = κ, |τ ◦ h(c)− γ(τ)(c)| < σ1 for all τ ∈ T (A) (e 6.277)

and dist(h‡(ū), α(ū)) < σ2 for all u ∈ U . (e 6.278)

Proof. To simplify the notation, without loss of generality, we may assume that X is connected.
Furthermore, a standard argument shows that, we can further reduce the general case to the
case that C = C(X).

We write K1(C) = G1 ⊕ Tor(K1(C)), where Tor(K1(C)) is the torsion subgroup of K1(C)
and G1 is the free part. Fix a point ξ0 ∈ X, define

C0 = {f ∈ C : f(ξ0) = 0}.

Then C0 ⊂ C is an ideal of C and C/C0 =Mr for some integer r ≥ 1. We write

K0(C) = Z[1C ]⊕K0(C0).

Let A1 be a unital separable amenable simple C∗-algebra with UCT and with TR(A1) =
TR(A) ≤ 1 such that

(K0(A1),K0(A1)+, [1A1 ], T (A1), ρA1) = (K0(A),K0(A)+, [1A], T (A), ρA) (e 6.279)

and K1(A1) = G1 ⊕ Tor(K1(A)). (e 6.280)

To simplify notation, we may assume that U = U0 ∪ U1, where U0 ⊂ U0(MN (C)) and U1 ⊂
Uc(MN (C)) are finite subsets. For each u ∈ U0, write u =

∏n(u)
i=1 exp(

√
−1ai(u)), where ai(u) ∈

MN (C) is a selfadjoint elements. Write

ai(u) = (a
(k,j)
i (u))N×N , i = 1, 2, ..., n(u).

Write

ci,k,j(u) =
a
(k,j)
i + (a

(k,j)
i )∗

2
and di,k,j(u) =

a
(k,j)
i − (a

(k,j)
i )∗

2i
.

Put
M = max{‖c‖, ‖ci,k,j(u)‖, ‖di,k,j(u)‖ : c ∈ H, u ∈ U0}.

Choose a non-zero projection e ∈ A such that

τ(e) <
σ1

8N2(M + 1)max{n(u) : u ∈ U0}
for all τ ∈ T (A).

Let e0 ∈ A1 be a projection such that [e0] = [e] using (e 6.279) and let A2 = (1− e0)A1(1− e0).
In what follows, we use the identification (e 6.279) Define θ1 ∈ Hom(Ki(C),Ki(A2)) as follows:
On K0(C), define θ1(m[1C ]) = m[1− e0] for all m ∈ Z, θ1|K0(C0) = κ|K0(C0), on K1(C), define

θ1|Tor(K1(C)) = κ|Tor(K1(C)), θ1|G1 = id|G1 . (e 6.281)
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By the Universal Coefficient Theorem, there exists an element θ1 ∈ KL(C,A2) which gives
the above homomorphisms. Let θ2 ∈ KL(A1, A) which gives the identification (e 6.279) and
θ2|Tor(K1(A1)) = id|Tor(K1(A1)) and θ2|G1 = κ|G1 . Let β = κ− θ2 ◦ θ1. We compute that

β([1C ]) = [e], β|K0(C0) = 0, (e 6.282)

β|K1(C) = 0. (e 6.283)

Thus β ∈ KKe(C, eAe)
++. It follows from 6.5 that there is a unital monomorphism ϕ0 : C → eAe

such that [ϕ0] = β.
Choose

H1 = H ∪ {ci,k,j(u), di,k,j(u) : 1 ≤ k, j ≤ N, 1 ≤ i ≤ n(u), u ∈ U0}.

It follows from 6.5 that there exists a unital monomorphism ϕ1 : C → A2 such that

[ϕ1] = θ1 and (e 6.284)

|τ ◦ ϕ1(f)− γ(τ)(f)| < σ1
8N2

(e 6.285)

for all f ∈ H1 for all τ ∈ T (A). Note that, for u ∈ U0,

∆(u) =

n(u)
∑

i=1

âj(u), (e 6.286)

where â(τ) = τ(a) for all a ∈ As.a.. Since α and γ are compatible, we then compute that

dist(ϕ‡
1(u), α(u)) < σ2/8 (e 6.287)

for all u ∈ U0. Denote by Uc(G1) the image of G1. Define χ : Uc(G1) → Aff(T (A))/ρA(K0(A))
by

χ = α|Uc(G1)) − ϕ‡
0|Uc(G1) − ϕ‡

1|Uc(G1). (e 6.288)

Note that Uc(G1) ∼= G1. We identify Uc(G1) with the corresponding part in Uc(K1(A2)). By
defining χ on Tor(K1(A2)) to be zero. We obtain a homomorphism χ : Uc(K1(A2)) →
Aff(T (A))/ρA(K0(A)). It follows from Theorem 8.6 of [20] that there exists a unital homo-
morphism h1 : A2 → (1− e)A(1 − e) such that

[h1] = θ2, (h1)♯ = idT (A) (e 6.289)

and h‡1|Uc(A2) = χ+ θ2|K1(A2), (e 6.290)

where we identify K1(A2) with Uc(A2) = Uc(G1)⊕Tor(K1(A)) and Uc(K1(A)) with K1(A). We
also identify Aff(T (A2))/ρA(K0(A2)) with Aff(T (A))/ρA(K0(A)). Note that (by (e 6.289),

h‡1|Aff(T (A))/ρA(K0(A))
= idAff(T (A))/ρA(K0(A))

.

Now define

h(f) = ϕ0(f)⊕ h1 ◦ ϕ1(f) for all f ∈ C. (e 6.291)

It follows that

[h] = κ, (e 6.292)

|τ ◦ h(f)− γ(τ)(f)| < σ1 for all f ∈ H and (e 6.293)

dist(h‡(ū), α(ū)) < σ2 for all u ∈ U . (e 6.294)
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Lemma 6.7. Let X be a compact subset of a finite CW complex Y. Then there exists a sequence
of finite CW complex Yn ⊃ Yn+1 each of which is a compact subset of Y and there exists a
contractive completely positive linear map ϕn : C(X) → C(Yn) such that

πn ◦ ϕn = idC(X), n = 1, 2, ... and (e 6.295)

lim
n→∞

‖ϕn(f)ϕn(g) − ϕn(fg)‖ = 0 (e 6.296)

for all f, g ∈ C(X), where πn : C(Yn) → C(X) is the quotient map.

Proof. Let dn ց 0 be a decreasing sequence of positive numbers. There are finitely many open
balls of Y with center in X and radius dn covers X. Let Zn be the union of closure of these
balls. Then Zn is a compact subset of Y which is homeomorphic to a finite CW complex. We
may assume that Zn ⊃ Zn+1. Then (by, for example, The Effros-Choi Theorem), there exists,
for each n, a contractive completely positive linear map ψn : C(X) → C(Zn) such that

πn ◦ ψn = idC(X), (e 6.297)

where πn(f) = f |X for f ∈ C(Zn), n = 1, 2, ....
Let {Fm} ⊂ C(X) be a sequence of increasing finite subsets of the unit ball of C(X) so that

its union is dense in the unit ball of C(X). Choose Y1 = Z1 and ϕ1 = ψ1. Let G1 = F1 ∪ {fg :
f, g ∈ F1}. Choose dn2 such that

|ψ1(f)(x)− ψ1(f)(x
′)| < 1/4 for all f ∈ G1, (e 6.298)

provided that dist(x, x′) < dn2 for all x, x′ ∈ Z1. By (e 6.297),

ψ1(fg)(x)− ψ1(f)(x)ψ1(g)(x) = 0 (e 6.299)

for all x ∈ X. Now for any z ∈ Xn2 , there exists x ∈ X such that dist(x, z) < dn1 . Therefore, by
(e 6.299) and (e 6.298),

‖ψ1(fg)(z) − ψ1(f)(z)ψ1(g)(z)| ≤ ‖ψ1(fg)(z) − ψ1(fg)(x)‖ (e 6.300)

+‖ψ1(fg)(x) − ψ1(f)(x)ψ1(g)(x)‖ (e 6.301)

+‖ψ1(f)(x)ψ1(g)(x) − ψ1(f)(z)ψ1(g)(z)‖ < 3/4 (e 6.302)

for all f, g ∈ F1. Choose Y2 = Zn2 . Define h1 : C(Z1) → C(Zn2) defined by h1(f) = f |Zn2
for all

f ∈ C(Z1). Define ϕ2 : C(X) → C(Y2) by defining

ϕ2(f) = h1 ◦ ψ1.

Thus, by (e 6.300),

‖ϕ2(fg)− ϕ2(f)ϕ2(g)‖ < 3/4 (e 6.303)

for all f, g ∈ F1. Note that

πn2 ◦ ϕ2 = idC(X). (e 6.304)

Let G2 = G1 ∪ F2 ∪ {fg : f, g ∈ F2}. Choose dn3 such that

|ϕ2(f)(x)− ϕ2(f)(x
′)| < 1/42 for all f ∈ G2, (e 6.305)

provided that dist(x, x′) < dn3 for all x, x′ ∈ Y2. By (e 6.297), for any x ∈ X,

ϕ2(fg)(x) = ϕ2(f)(x)ϕ2(g)(x) (e 6.306)
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Then, for any z ∈ Zn3 , there exists x ∈ X such that dist(x, z) < dn3 . Thus, by (e 6.306) and
(e 6.305),

|ϕ2(fg)(z)− ϕ2(f)(z)ϕ(g)(z)| < 3/42 for all z ∈ Zn3 . (e 6.307)

Let h2 : C(Y2) → C(Zn3) be defined by h2(f) = f |Zn3
for all f ∈ C(Y2). Put Y3 = Zn3 . Define

ϕ3 : C(X) → C(Yn3) by ϕ3(f) = h2 ◦ ϕ2. Then

πn3 ◦ ϕ3 = idC(X). (e 6.308)

By (e 6.307), we have that

‖ϕ3(fg)− ϕ3(f)ϕ3(g)‖ < 3/42 (e 6.309)

for all f, g ∈ F2. In this fashion, we obtain a sequence of contractive completely positive linear
map ϕk : C(X) → C(Yk), where Yk = Znk

, such that

πnk
◦ ϕk = idC(X) and (e 6.310)

‖ϕk(fg)− ϕk(f)ϕk(g)‖ < 3/4k−1, (e 6.311)

for all f, g ∈ Fk, k = 1, 2, .... It follows that, for any f, g ∈ C(X),

lim
k→∞

‖ϕk(fg)− ϕk(f)ϕk(g)‖ = 0. (e 6.312)

We have the following corollary.

Corollary 6.8. Let Y be a finite CW complex and P ∈Mr(C(Y )) be a non-zero projection for
some integer r ≥ 1. Let X be a compact metric space of Y and let C = π(PMr(C(Y ))P ), where
π : Mr(C(Y )) → Mr(C(X)) be the quotient map defined by π(f) = f |X . Then there exists a
sequence of finite CW complex Y ⊃ Yn ⊃ Yn+1 each of which is a compact subset of Y and there
exists a contractive completely positive linear map ϕn : C → Pn(C(Yn))Pn such that

πn ◦ ϕn = idC , n = 1, 2, ... and (e 6.313)

lim
n→∞

‖ϕn(f)ϕn(g)− ϕn(fg)‖ = 0 (e 6.314)

for all f, g ∈ C(X), where Pn = P |Yn and πn : C(Yn) → C(X) is the quotient map defined by
πn(f) = f |X for all f ∈ C(Yn).

Lemma 6.9. Let Y be a finite CW complex and P ∈ Mr(C(Y )) be a non-zero projection for
some integer r ≥ 1. Let X be a compact metric space of Y and let C = π(PMr(C(Y ))P ),
where π : Mr(C(Y )) → Mr(C(X)) is the quotient map defined by π(f) = f |X . Suppose that
A is a unital infinite dimensional separable simple C∗-algebra with TR(A) ≤ 1. For any κ ∈
KLe(C,A)

++, any affine continuous map γ : T (A) → Tf(C) and any continuous homomorphism
α : U(M∞(C))/CU(M∞(C)) → U(A)/CU(A) such that κ, γ and α are compatible, then there
is a unital homomorphism h : C → A such that

[h] = κ, h♯ = γ and h‡ = α. (e 6.315)
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Proof. Let Yn, Pn, πn and ϕn be as given by 6.8. Let Bn = PnMr(C(Yn))Pn. Let {q′n} be a
sequence of non-zero projections such that τ(q′n) < 1/n for all τ ∈ T (A), n = 1, 2, .... Since
q′nAq

′
n is a unital infinite dimensional simple C∗-algebra of tracial rank at most one, by 6.3,

there exists a non-zero projection qn ≤ q′n and a unital monomorphism ϕ0,n : Bn → qnAqn,
n = 1, 2, ...

Define γn : T (A) → Tf(Bn) by

γ1(τ)(b) = τ(1− qn)γ(τ)(πn(b)) + τ ◦ ϕ0,n(b) (e 6.316)

for all b ∈ Bn and for all τ ∈ T (A).
Define sn : Bn → Bn+1 by sn(f) = f |Yn for all f ∈ Bn, n = 1, 2, ....
Let κn = κ ◦ [πn] be in HomΛ(K(Bn),K(A)) and let αn : U(M∞(Bn))/CU(M∞(C)) →

U(A)/CU(A) defined by αn = α ◦ π‡n.
Note that Ki(Bn) is finitely generated (i = 0, 1). Let ǫn > 0, Fn ⊂ Bn be a finite subset

and Qn ⊂ K(Bn) be a finite subset such that (ǫn,Fn,Pn) is a K-triple and (ǫn,Fn) is KK-pair
for Bn, n = 1, 2, .... Put Qn = [πn](Pn), n = 1, 2, .... We may assume that [sn](Pn) ⊂ Pn+1

and ∪∞
n=1Qn = K(C). Let Gn ⊂ C be a finite subset and let δn > 0 such that (δn,Gn,Qn) is a

K-triple.
Choose, for each n, a finite subset Fn ⊂ Bn such that sn(Fn) ⊂ Fn+1 and ∪∞

n=1πn(Fn) is
dense in C. Choose, for each n, a finite subset Hn ⊂ (Bn)s.a such that sn(Hn) ⊂ Hn+1 and
∪∞
n=1πn(Hn) is dense in Cs.a.. Choose, for each n, a finite subset Un ⊂ U(MN(n)(Bn)) (for some

integer N(n)) such that sn(Un) ⊂ Un+1 and ∪∞
n=1πn(Un) is dense in U(M∞(C)).

It follows from 6.6 there is, for each n, a unital monomorphism hn : Bn → A such that

[hn] = κn (e 6.317)

|τ ◦ hn(f)− γn(τ)(f)| < 1/2n for all f ∈ Hn and for all τ ∈ T (A) (e 6.318)

and dist(h‡n(ū), αn(ū)) < 1/2n for all u ∈ Un, (e 6.319)

n = 1, 2, .... Define Ln = hn ◦ ϕn. Note that

πn ◦ ϕn = idC and (e 6.320)

lim
n→∞

‖ϕn(fg)− ϕn(f)ϕn(g)‖ = 0 for all f, g ∈ C. (e 6.321)

Thus, without loss of generality, we may assume that ϕn is (δn−1,Gn−1)-multiplicative. It then
follows that from (e 6.320) and (e 6.317) that

[hn ◦ ϕn]|Qn = (κn)|Qn , n = 1, 2, .... (e 6.322)

By (e 6.322), (e 6.318), (e 6.319), combining 6.2 and applying 5.5, we obtain a subsequence
hnk

◦ ϕnk
: C → A and a sequence of unitaries {uk} ⊂ A such that

‖Aduk ◦ hnk+1
◦ ϕnk+1

(f)−Aduk−1 ◦ hnk
◦ ϕnk

(f)‖ < 1/2k+1 (e 6.323)

for all f ∈ Fk. It follows that {Aduk−1 ◦hnk
◦ϕnk

(f)} is Cauchy for all f ∈ C. Define h : C → A
by

h(f) = lim
k→∞

Aduk−1 ◦ hnk
◦ ϕnk

(f) for all f ∈ C.

It is ready to check that h satisfy all requirements of the lemma.
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Theorem 6.10. Let C be a unital AH-algebra and let A be a unital infinite dimensional sep-
arable simple C∗-algebra with TR(A) ≤ 1. For any κ ∈ KLe(C,A)

++, any affine continuous
map γ : T (A) → Tf(C) and any continuous homomorphism α : U(M∞(C))/CU(M∞(C)) →
U(A)/CU(A) such that κ, γ and α are compatible, then there is a unital homomorphism h :
C → A such that

[h] = κ, h♯ = γ and h‡ = α. (e 6.324)

Proof. Write C = limn→∞(Bn, ψn), where Bn = PnMr(n)(C(Yn))Pn, Yn is a finite CW complex,
Pn ∈ Mr(n)(C(Yn)) is a projection and ψn : Bn → Bn+1 is a unital homomorphism. Denote
by ψn,∞ : Bn → C the unital homomorphism induced by the inductive limit system. Then
ϕn,∞(Bn) ∼= QnMr(n)(C(Xn))Qn, where Xn ⊂ Yn is a compact subset, Qn = πn(Pn) and
where πn : Mr(n)(C(Yn)) → Mr(n)(C(Xn)) is the quotient map defined by πn(f) = f |Xn . Put

Cn = ϕn,∞(Bn). We will identify Cn with QnMr(n)(C(Xn))Qn and write C = ∪∞
n=1Cn, where

Cn = QnMr(n)(C(Xn)Qn,
Denote by ın : Cn → Cn+1 and ın,∞ : Cn → C be the embedding, respectively. Let κn =

κ◦[ın,∞] be in HomΛ(K(Cn),K(A)) and let αn : U(M∞(Cn))/CU(M∞(C)) → U(A)/CU(A) be

defined by αn = α ◦ ı‡n,∞. Let (ın,∞)♯ : Tf(C) → Tf(Cn) induced by ın,∞ and define γn : T (A) →
Tf (Cn) by (ın,∞)♯ ◦ γ. Put Qn = [ın,∞](Pn), n = 1, 2, .... We may assume that ∪∞

n=1Qn = K(C).
Choose, for each n, a finite subset Fn ⊂ Cn such that Fn ⊂ Fn+1 and ∪∞

n=1Fn is dense in C. It
follows from 6.9 there is, for each n, a unital monomorphism ϕn : Cn → A such that

[ϕn] = κn, (ϕn)♯ = γn and ϕ‡
n = αn (e 6.325)

n = 1, 2, .... By applying 5.10, for each n, there exists a unitary un ∈ A (with u0 = 1) such that

‖Adun ◦ ϕn+1 ◦ ın(f)−Adun−1 ◦ ϕn(f)‖ < 1/2n for all f ∈ Fn, (e 6.326)

n = 1, 2, .... We obtain a unital monomorphism h : C → A such that

h(f) = lim
n→∞

Adun ◦ ϕn+1 ◦ ın(f) for all f ∈ C. (e 6.327)

One checks that h meets all requirements of the theorem.

Corollary 6.11. Let C be a unital AH-algebra and let A be a unital infinite dimensional sepa-
rable simple C∗-algebra with TR(A) ≤ 1. For any κ ∈ KLe(C,A)

++, any affine continuous map
γ : T (A) → Tf(C) and any continuous homomorphism α : K1(C) → Aff(T (A))/K0(A) such
that κ, γ are compatible, then there is a unital homomorphism h : C → A such that

[h] = κ, h♯ = γ and h† = α. (e 6.328)
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